精英家教网 > 高中数学 > 题目详情
11.点(a,b)关于直线x+y=1的对称点的坐标是(  )
A.(1-b,1-a)B.(1-a,1-b)C.(-a,-b)D.(-b,-a)

分析 设出对称点的坐标列出方程组求解即可.

解答 解:点(a,b)关于直线x+y=1对称的点为(x,y),
则$\left\{\begin{array}{l}{\frac{b-y}{a-x}=1}\\{\frac{a+x}{2}+\frac{b+y}{2}=1}\end{array}\right.$,解得:$\left\{\begin{array}{l}{x=1-b}\\{y=1-a}\end{array}\right.$,
故选:A.

点评 本题考查了点关于直线的对称点的求法,对称知识的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.如图四面体O-ABC中,$\overrightarrow{OA}$=$\overrightarrow{a}$ $\overrightarrow{OB}$=$\overrightarrow{b}$,$\overrightarrow{OC}$=$\overrightarrow{c}$,D为AB的中点,M为CD的中点,则$\overrightarrow{CM}$=$\frac{1}{4}\overrightarrow{a}$+$\frac{1}{4}\overrightarrow{b}$-$\frac{1}{2}\overrightarrow{c}$($\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$用表示)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若sin(α+$\frac{π}{4}$)=$\frac{3}{5}$,且α∈($\frac{π}{4}$,$\frac{5π}{4}$),则cosα=(  )
A.-$\frac{7\sqrt{2}}{10}$B.$\frac{\sqrt{2}}{10}$C.$\frac{7\sqrt{2}}{10}$D.-$\frac{\sqrt{2}}{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设集合A={x|-3≤2x-1≤3},集合B为函数y=lg(x-1)的定义域,则A∪B=(  )
A.(1,2)B.[-1,+∞)C.(1,2]D.[1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数$f(x)=2cos\frac{x}{2}(\sqrt{3}sin\frac{x}{2}+cos\frac{x}{2})-1,x∈R$.
(1)求f(x)的最小正周期;
(2)设$α,β∈({0,\frac{π}{2}}),f(α)=2,f(β)=\frac{6}{5}$,求f(α+β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知tan(π-α)=-2,则$\frac{sinα+cosα}{sinα-cosα}$=(  )
A.-3B.-$\frac{1}{3}$C.$\frac{1}{3}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.从集合{3,5,7,9,11}中任取两个元素,①相加可得多少个不同的和?②相除可得多少个不同的商?③作为椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1中的a,b,可以得到多少个焦点在x轴上的椭圆方程?④作为双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1中的a,b,可以得到多少个焦点在x轴上的双曲线方程?上面四个问题属于排列问题的是(  )
A.①②③④B.②④C.②③D.①④

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.对于函散y=f(x)(x∈D),若同时满足以下条件:
①f(x)在D上单调递增或单凋递减:
②存在区间[a,b]⊆D,使f(x)在[a,b]上的值域也是[a,b],则称函数y=f(x)是闭函数.
给出下面四个函数:
(1)f(x)=x3,x∈R;
(2)f(x)=2x-1.x∈R;
(3)f(x)=x2-4x+5,x∈[0,2];
(4)f(x)=sin$\frac{π}{2}$x,x∈[0,1],
其中为闭函数的有(1)(2)(3)(4)(把你认为正确的函数序号都填上).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.长方体的相邻三个面的面积分别是12,15,20,且它的八个顶点都在同一个球面上,这个球的表面积是(  )
A.100πB.60πC.50πD.30π

查看答案和解析>>

同步练习册答案