(本小题满分16分)数列{an}的前n项和为Sn(n∈N*),点(an,Sn)在直线y=2x-3n上.
(1)若数列{an+c}成等比数列,求常数c的值;
(2)求数列{an}的通项公式;
(3)数列{an}中是否存在三项,它们可以构成等差数列?若存在,请求出一组适合条件的项;若不存在,请说明理由.
(1)c=3; (2)×-3;(3)不存在。
解析试题分析:(Ⅰ)由“点(an,Sn)在直线y=2x-3n上.”可得Sn=2an-3n,由通项和前n项和关系可得an+1=2an+3,变形为an+1+3=2(an+3)符合等比数列的定义,从而可确定c=3.
(Ⅱ)由(I)根据等比数列通项公式求解有an+3=b•2n-1=3•2n整理可得an=3•2n-3
(Ⅲ)先假设存在s、p、r∈N*且s<p<r使as,ap,ar成等差数列根据等差中项有2ap=as+ar,再用通项公式展开整理有2p-s+1=1+2r-s∵因为s、p、r∈N*且s<p<r所以2p-s+1为偶数,1+2r-s为奇数,奇数与偶数不会相等的.所以不存在.
考点:数列与函数的综合;等比数列的定义;等差数列与等比数列的综合
点评:数列与函数的综合运用,主要涉及了通项与前n项和的关系,构造等比数列,求通项,等差中项及数域问题.
科目:高中数学 来源: 题型:解答题
已知数列{an}为等差数列,Sn为其前n项和,且,.
(1)求数列{an}的通项公式;
(2)求证数列是等比数列;
(3)求使得的成立的n的集合.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
各项均为正数的等比数列,,,单调增数列的前项和为,,且().
(Ⅰ)求数列、的通项公式;
(Ⅱ)令(),求使得的所有的值,并说明理由.
(Ⅲ) 证明中任意三项不可能构成等差数列.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com