| A. | 32 | B. | 48 | C. | 64 | D. | 96 |
分析 由已知点M(不在平面ABCD内)满足|MA|+|MB|=10,可得点M在以A,B为焦点的椭球上(去掉在平面ABCD内的点),球心为O.当MO⊥平面ABCD时,MO=$\sqrt{A{M}^{2}-A{O}^{2}}$,此时三棱锥的高最大,即可得出.
解答 解:由已知点M(不在平面ABCD内)满足|MA|+|MB|=10,
可得点M在以A,B为焦点的椭球上(去掉在平面ABCD内的点),球心为O.
当MO⊥平面ABCD时,MO=$\sqrt{A{M}^{2}-A{O}^{2}}$=$\sqrt{{5}^{2}-{4}^{2}}$=3,此时三棱锥的高最大,
因此三棱锥A-BCM的体积的最大值=$\frac{1}{3}•MO•{S}_{ABC}$=$\frac{1}{3}×3×\frac{1}{2}×{8}^{2}$=32.
故选:A.
点评 本题考查了椭球的定义及其性质、线面面面垂直的性质、三棱锥的体积计算公式、勾股定理,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com