精英家教网 > 高中数学 > 题目详情
18.已知正方形ABCD的边长为8,空间有一点M(不在平面ABCD内)满足|MA|+|MB|=10,则三棱锥A-BCM的体积的最大值是(  )
A.32B.48C.64D.96

分析 由已知点M(不在平面ABCD内)满足|MA|+|MB|=10,可得点M在以A,B为焦点的椭球上(去掉在平面ABCD内的点),球心为O.当MO⊥平面ABCD时,MO=$\sqrt{A{M}^{2}-A{O}^{2}}$,此时三棱锥的高最大,即可得出.

解答 解:由已知点M(不在平面ABCD内)满足|MA|+|MB|=10,可得点M在以A,B为焦点的椭球上(去掉在平面ABCD内的点),球心为O.
当MO⊥平面ABCD时,MO=$\sqrt{A{M}^{2}-A{O}^{2}}$=$\sqrt{{5}^{2}-{4}^{2}}$=3,此时三棱锥的高最大,
因此三棱锥A-BCM的体积的最大值=$\frac{1}{3}•MO•{S}_{ABC}$=$\frac{1}{3}×3×\frac{1}{2}×{8}^{2}$=32.
故选:A.

点评 本题考查了椭球的定义及其性质、线面面面垂直的性质、三棱锥的体积计算公式、勾股定理,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=ln(x+1)-x2-x.
(1)求函数的单调性;
(2)若关于x的方程f(x)=-$\frac{5}{2}$x+b在区间[0,2]上恰好有两个不同的实数根,求实数b的取值范围;
(3)若对于不等式f(x)≤f(2x)+3x2+x-m2+3am+4对于任意a∈[-1,1],x∈[0,1]恒成立.求m的取值1范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若$f(x)=\left\{{\begin{array}{l}{{3^x},x∈[-1,0)}\\{-{{(\frac{1}{3})}^x},x∈[0,1]}\end{array}}\right.$,则f[f(log32)]的值为$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在如图的五面体中,EF⊥平面AEB,AE⊥EB,AD∥EF,BC=2AD=4,EF=3,AE=BE=2,G是BC的中点.
(1)求证:EF∥BC;
(2)求证:BD⊥EG;
(3)求多面体ADBEG的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若正方体ABCD-A1B1C1D1的棱长为1,则三棱锥B-B1C1D的体积为$\frac{1}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知二次函数f(x)=ax2+bx+c
(1)若f(x)满足f(-1)=0.且对任意x∈R,都有x≤f(x)≤x2-x+1恒成立,求a,b,c的值;
(2)在(1)的条件下,是否存在实数k,使函数g(x)=f(x)-kx2在闭区间[-1,2]上递减,要讲述其理由.
(3)设h(x)=lnx+ax2+c-f(x),若y=h(x)得图象与x轴有两个不同的交点A(x1,0),(x2,0),且0<x1<x2,求证:x1x2>e2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知a∈R,f(x)=(x2-4)(x-a).
(1)求f′(x);
(2)若f′(-1)=0,求f(x)在[-2,2]上的最大值和最小值;
(3)若f(x)在(-∞,-2]和[2,+∞)上是单调递增的,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知△ABC的三个顶点在以O为球心的球面上,a,b,c分别为△ABC的三个内角A,B,C的对边,满足$a=\sqrt{3},b=1$,且(a+b)(sinA-sinB)=(c+b)sinC,若三棱锥O-ABC的体积为$\frac{{\sqrt{5}}}{4}$,则球O的表面积为64π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.求不等式$|{\sqrt{3x-2}-3}|>1$.

查看答案和解析>>

同步练习册答案