精英家教网 > 高中数学 > 题目详情

【题目】某校为了解开展校园安全教育系列活动的成效对全校学生进行了一次安全意识测试根据测试成绩评定“合格”“不合格”两个等级同时对相应等级进行量化:“合格”记5“不合格”记0分.现随机抽取部分学生的答卷统计结果及对应的频率分布直方图如图所示:

等级

不合格

合格

得分

[20,40)

[40,60)

[60,80)

[80,100]

频数

6

a

24

b

(1)a,b,c的值;

(2)先用分层抽样的方法从评定等级为“合格”和“不合格”的学生中随机抽取10人进行座谈再从这10人中任选4记所选4人的量化总分为ξ,ξ的分布列及数学期望E(ξ);

(3)某评估机构以指标其中表示的方差)来评估该校开展安全教育活动的成效.若0.7,则认定教育活动是有效的;否则认定教育活动无效应调整安全教育方案.在(2)的条件下判断该校是否应调整安全教育方案.

【答案】(1) .

(2)分布列见解析,.

(3) 认定教育活动是有效的;在(2)的条件下,判断该校不用调整安全教育方案.

【解析】试题分析:(I)利用频率分布直方图的性质即可得出(II)从评定等级为“合格”和“不合格”的学生中随机抽取10人进行座谈,其中“不合格”的学生数=10=4,则“合格”的学生数=6.由题意可得ξ=0,5,10,15,20.利用“超几何分布列”的计算公式即可得出概率,进而得出分布列与数学期望(III)利用Dξ计算公式即可得出,可得M=即可得出结论.

解析:

(1)由频率分布直方图,可知成绩在[20,40)内的频率为0.005×20=0.1,

故抽取的学生答卷数为=60,

由频率分布直方图可知,得分在[80,100]内的频率为0.01×20=0.2,

所以b=60×0.2=12.

又6+a+24+12=60,

所以a=18,所以c=0.015.

(2)“不合格”与“合格”的人数之比为24∶36=2∶3,

因此抽取的10人中“不合格”的学生有4人,“合格”的学生有6人,

所以ξ的所有可能取值为20,15,10,5,0.

所以P(ξ=20)=P(ξ=15)=

P(ξ=10)=P(ξ=5)=

P(ξ=0)=.

所以ξ的分布列为:

ξ

20

15

10

5

0

P

E(ξ)=20×+15×+10×+5×+0×=12.

(3)由(2)可得

D(ξ)=(20-12)2×+(15-12)2×+(10-12)2×+(5-12)2×+(0-12)2×=16,

所以M=0.75>0.7,

故我们认为该校的安全教育活动是有效的,不需要调整安全教育方案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)若为偶函数,求的值并写出的增区间;

(Ⅱ)若关于的不等式的解集为,当时,求的最小值;

(Ⅲ)对任意的,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(xiyi)(i=12n),用最小二乘法建立的回归方程为=0.85x-85.71,则下列结论中不正确的是

A. yx具有正的线性相关关系

B. 回归直线过样本点的中心(

C. 若该大学某女生身高增加1cm,则其体重约增加0.85kg

D. 若该大学某女生身高为170cm,则可断定其体重比为58.79kg

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙、丙三人进行羽毛球练习赛,其中两人比赛,另一人当裁判,每局比赛结束时,负的一方在下一局当裁判,设各局中双方获胜的概率均为 ,各局比赛的结果都相互独立,第1局甲当裁判.
(1)求第4局甲当裁判的概率;
(2)X表示前4局中乙当裁判的次数,求X的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将函数f(x)=sinx的图象向右平移 个单位后得到函数y=g(x)的图象,则函数y=f(x)+g(x)的最大值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥P﹣ABCD中,AD⊥平面PAB,AP⊥AB.
(1)求证:CD⊥AP;
(2)若CD⊥PD,求证:CD∥平面PAB.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本题满分12分)已知一次函数f(x)满足:f(1)=2, f(2x)=2f(x)-1.

(1) 求f(x)的解析式;

(2) 设, 若|g(x)|-af(x)+a≥0,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在多面体中,四边形为等腰梯形,,已知,四边形为直角梯形,.

(1)证明:平面平面

(2)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若 都是从0,1,2,3,4五个数中任取的一个数,求上述函数有零点的概率;

(2)若 都是从区间上任取的一个数,求成立的概率.

查看答案和解析>>

同步练习册答案