分析 (1)将sinA=sin(B+C)代入条件式展开即可整理得出B,使用正弦定理用A表示出a,c得出L关于A的表达式f(A),利用A的范围和正弦函数的性质求出L的最大值;
(2)利用余弦定理解出ac,代入面积公式得出三角形的面积.
解答 解:(1)∵$sinB(sinC+\sqrt{3}cosC)-\sqrt{3}sinA=0$,∴$sinB(sinC+\sqrt{3}cosC)-\sqrt{3}sin(B+C)=0$,
即$sinB(sinC+\sqrt{3}cosC)-\sqrt{3}sinBcosC-\sqrt{3}cosBsinC=0$,∴$sinBsinC-\sqrt{3}cosBsinC=0$,
∵sinC≠0,∴$sinB-\sqrt{3}cosB=0$,
∴$tanB=\sqrt{3}$,B∈(0,π),∴$B=\frac{π}{3}$,
∵$\frac{a}{sinA}=\frac{c}{sinC}=\frac{b}{sinB}=2$,∴a=2sinA,c=2sinC=2sin($\frac{2π}{3}-A$).
∴L=a+b+c=2sinA+2sin($\frac{2π}{3}-A$)+$\sqrt{3}$=3sinA+$\sqrt{3}$cosA+$\sqrt{3}$=2$\sqrt{3}$sin(A+$\frac{π}{6}$)+$\sqrt{3}$.
∴f(A)=2$\sqrt{3}$sin(A+$\frac{π}{6}$)+$\sqrt{3}$,
∴当$A=\frac{π}{3}$时,${L_{max}}=3\sqrt{3}$.
(2)在△ABC中,∵b2=a2+c2-2ac•cosB,即3=a2+c2-ac=(a+c)2-3ac=4-3ac,
∴$ac=\frac{1}{3}$,
∴${S_{△ABC}}=\frac{1}{2}ac•sinB=\frac{1}{2}•\frac{1}{3}•\frac{{\sqrt{3}}}{2}=\frac{{\sqrt{3}}}{12}$.
点评 本题考查了正弦定理,余弦定理,三角形的面积公式,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 3 | B. | 2 | C. | 1 | D. | 0 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $-\frac{11}{14}$ | B. | $\frac{12}{7}$ | C. | $-\frac{14}{45}$ | D. | $-\frac{11}{24}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 圆锥是由直角三角形绕其一条边所在直线旋转得到的几何体 | |
| B. | 圆台的侧面展开图是一个扇环 | |
| C. | 棱柱的侧棱可以不平行 | |
| D. | 棱台的各侧棱延长后不一定交于一点 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-1)n$\frac{n+1}{3^n}$ | B. | (-1)n+1$\frac{n+1}{3^n}$ | C. | (-1)n$\frac{n}{3^n}$ | D. | (-1)n+1$\frac{n}{{3}^{n}}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com