精英家教网 > 高中数学 > 题目详情
7.若M∈平面α,M∈平面β,则α与β的位置关系是(  )
A.平行B.相交C.异面D.不确定

分析 根据两平面有公共点可知两平面必有一条公共直线.

解答 解:∵M∈平面α,M∈平面β,
即M为平面α,β的公共点,
∴平面α,β有一条经过M的公共直线,
故α,β相交.
故选:B.

点评 本题考查了平面的基本性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=ax3+bx2+cx+d(a≠0)的图象关于原点对称,且图象在点(1,f(1))处的切线与直线x+6y+11=0垂直,导函数f′(x)的最大值为12.
(1)求函数f(x)的解析式;
(2)若方程f(x)=3x2+m有三个不同的实数根,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知命题P:方程x2+mx+1=0有两个不等的负实根.命题Q:方程4x2+4(m-2)x+1=0无实根.若“P或Q”为真,“P且Q”为假,则实数m的取值范围是(1,2]∪[3,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.${∫}_{0}^{2}$($\sqrt{2x}$+$\sqrt{4-(x-2)^{2}}$)dx=$\frac{8}{3}$+π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=2cos(3x+$\frac{π}{4}$).求:
(Ⅰ)f(x)的单调递增区间;
(Ⅱ)f(x)图象的对称轴.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.某几何体的三视图如图所示,则该几何体的体积为(  )
A.$\frac{3\sqrt{3}}{2}$B.2$\sqrt{3}$C.$\frac{5\sqrt{3}}{2}$D.3$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=$\sqrt{3}$sinωx•cosωx+cos2ωx-$\frac{1}{2}$(ω>0)的两条相邻对称轴之间的距离为$\frac{π}{2}$.
(1)求ω的值;
(2)将函数f(x)的图象向左平移$\frac{π}{6}$个单位,再将所得函数的图象上所有点的横坐标伸长到原来的2倍,纵坐标不变,得到函数y=g(x)的图象,若函数y=g(x)-k在区间[-$\frac{π}{6}$,$\frac{2π}{3}$]上存在零点,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在△ABC中,内角A,B,C的对边分别是a,b,c,且$sinB(sinC+\sqrt{3}cosC)-\sqrt{3}$sinA=0,b=$\sqrt{3}$.
(1)设△ABC的周长L=f(A),求f(A)的表达式,并求L的最大值;
(2)若a+c=2,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.等比数列{an}的前n项和为Sn,若a1+a2+a3+a4=1,a5+a6+a7+a8=2,Sn=15,则项数n为(  )
A.12B.14C.15D.16

查看答案和解析>>

同步练习册答案