【题目】已知函数f(x)=2x反函数为f﹣1(x),若f﹣1(m)+f﹣1(n)=2,则 的最小值为( )
A.
B.
C.1
D.2
【答案】C
【解析】解答:由y=2x解得:x=log2y ∴函数f(x)=2x的反函数为f﹣1(x)=log2x , x>0
由f﹣1(m)+f﹣1(n)=2得:log2m+log2n=2
即:log2mn=2
∴mn=4
∴
则 的最小值为1
故选C.
分析:本题考查反函数的概念、反函数的求法、指数式和对数式的互化、对数的运算、由基本不等式 求最值等相关知识.根据y=2x可得f﹣1(x)的解析式,由此代入f﹣1(m)+f﹣1(n)=2可得a、b的关系式,根据基本不等式 即可得到 最小值.
【考点精析】通过灵活运用基本不等式,掌握基本不等式:,(当且仅当时取到等号);变形公式:即可以解答此题.
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,已知直线y=﹣2x+1与圆O:x2+y2=r2(r>0)交于M,N两点,且MN=.
(1)求M,N的坐标;
(2)求过O,M,N三点的圆的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下面四个结论: ①数列可以看作是一个定义在正整数集(或它的有限子集{1,2,3……,n})上的函数;
②数列若用图象表示,从图象上看都是一群孤立的点;
③数列的项数是无限的;
④数列通项的表示式是唯一的.
其中正确的是( )
A.①②
B.①②③
C.②③
D.①②③④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若0<a<b,且a+b=1,则下列各式中最大的是( )
A.﹣1
B.log2a+log2b+1
C.log2b
D.log2(a3+a2b+ab2+b3)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱锥P-ABC中,PA⊥底面ABC,.点D,E,N分别为棱PA,PC,BC的中点,M是线段AD的中点,PA=AC=4,AB=2.
(1)求证:MN∥平面BDE;
(2)求二面角C-EM-N的正弦值;
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某加工厂用某原料由车间加工出A产品,由乙车间加工出B产品.甲车间加工一箱原料需耗费工时10小时可加工出7千克A产品,每千克A产品获利40元.乙车间加工一箱原料需耗费工时6小时可加工出4千克B产品,每千克B产品获利50元.甲、乙两车间每天功能完成至多70多箱原料的加工,每天甲、乙车间耗费工时总和不得超过480小时,甲、乙两车间每天获利最大的生产计划为( )
A.甲车间加工原料10箱,乙车间加工原料60箱
B.甲车间加工原料15箱,乙车间加工原料55箱
C.甲车间加工原料18箱,乙车间加工原料50箱
D.甲车间加工原料40箱,乙车间加工原料30箱
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知某校5个学生期末考试数学成绩和总分年级排名如下表:
学生的编号 | 1 | 2 | 3 | 4 | 5 |
数学 | 115 | 112 | 93 | 125 | 145 |
年级排名 | 250 | 300 | 450 | 70 | 10 |
(1)通过大量事实证明发现,一个学生的数学成绩和总分年级排名具有很强的线性相关关系,在上述表格是正确的前提下,用表示数学成绩,用表示年级排名,求与的回归方程;(其中都取整数)
(2)若在本次考试中,预计数学分数为120分的学生年级排名大概是多少?
参考数据和公式:,其中,,其中
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com