精英家教网 > 高中数学 > 题目详情
16.设事件A在每次试验中发生的概率都相同,且在三次独立重复试验中,若事件A至少发生一次的概率为$\frac{26}{27}$,则事件A恰好发生一次的概率为$\frac{2}{9}$.

分析 设事件A在每次试验中发生的概率都是P,根据事件A至少发生一次的概率为$\frac{26}{27}$,求出p,再求出事件A恰好发生一次的概率.

解答 解:设事件A在每次试验中发生的概率都是P,则由事件A至少发生一次的概率为$\frac{26}{27}$,
可得 1-C30•P0•(1-P)3=$\frac{26}{27}$,
解得P=$\frac{2}{3}$.
故事件A恰好发生一次的概率为 C31•P•(1-P)2=3×$\frac{2}{3}$×($\frac{1}{3}$)2=$\frac{2}{9}$,
故答案为:$\frac{2}{9}$

点评 本题主要考查n次独立重复实验中恰好发生k次的概率,等可能事件的概率,所求的事件的概率等于用1减去它的对立事件概率,属于中档题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.设f(x)=-x2-ax+1,$g(x)=\frac{{a{x^2}+x+a}}{x^2}$,
(Ⅰ)若f(x)-2=0在(0,3]上有两个不等实根,求a的取值范围.
(Ⅱ)若对任意的${x_1}∈[\frac{1}{2},1]$,存在x2∈[1,2],都有f(x2)≥g(x1)成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1的一条渐近线与直线x-2y+6=0互相垂直,则此双曲线的离心率是(  )
A.$\sqrt{3}$B.$2\sqrt{2}$C.$\sqrt{5}$D.$\sqrt{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.“孝敬父母.感恩社会”是中华民族的传统美德.从出生开始,父母就对们关心无微不至,其中对我们物质帮助是最重要的一个指标,下表是一个统计员在统计《父母为我花了多少》当中使用处理得到下列的数据:
参考数据公式:$\sum_{i=1}^6{x_i}{y_i}$=1024.6,$\sum_{i=1}^6{{x_i}^2}$=730,
线性回归方程:$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$,($\widehat{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{xy}}{\sum_{n=i}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\widehat{y}$-$\widehat{b}$$\overline{x}$)
岁数x126121617
花费累积y(万元)12.89172224
假设花费累积y与岁数x符合线性相关关系,求
(1)花费累积y与岁数x的线性回归直线方程(系数保留3位小数);
(2)24岁大学毕业之后,我们不再花父母的钱,假设你在30岁成家立业之后,在你50岁之前偿还父母为你的花费(不计利息).那么你每月要偿还父母约多少元钱?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.在△ABC中,已知角A,B,C所对的边分别为a,b,c,且c(acosB-bcosA)=2b2,则$\frac{sinA}{sinB}$=$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.100只灯泡中含有n(2≤n≤92)只不合格品,若从中一次任取10只,记“恰好含有2只不合格品”的概率为f(n),当f(n)取得最大值时,n=20.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.a,b表示直线,α表示平面,则下列命题中正确的是(  )
A.$\left.\begin{array}{l}{a∥b}\\{b⊥α}\end{array}\right\}$⇒a⊥αB.$\left.\begin{array}{l}{a∥b}\\{b?α}\end{array}\right\}$⇒a∥αC.$\left.\begin{array}{l}{a⊥b}\\{b∥α}\end{array}\right\}$⇒a⊥αD.$\left.\begin{array}{l}{a⊥α}\\{a⊥b}\end{array}\right\}$⇒b?α

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,底面为菱形的四棱锥P-ABCD中,PA⊥面ABCD,∠ABD=60°,E为PC上一动点,PA=AC.
(1)求证BD⊥AE;
(2)当AE⊥平面PBD时,求$\frac{PE}{CE}$的值;
(3)在(2)的条件下,求AD与平面PBD所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.某学校研究性学习小组对该校高三学生视力情况进行调查,在高三的全体1000名学生中随机抽取了100名学生的体检表,学习小组成员发现,学习成绩突出的学生,近视的比较多,为了研究学生的视力与学习成绩是否有关系,对年级名次在1~50名和951~1000名的学生进行了调查,得到如下数据:
(1)根据表中的数据,能否在犯错的概率不超过0.05的前提下认为视力与学习成绩有关系?
(2)根据表中数据,在调查的100名学生中,按照分层抽样在不近视的学生中抽取了9人,进一步调查他们良好的护眼习惯,并且在这9人中任取3人,记名次在1~50名的学生人数为X,求X的分布列和数学期望.
年级名次
是否近视
1~50951~1000
近视4132
不近视918
附:P(K2≥3.841=0.05)K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

同步练习册答案