精英家教网 > 高中数学 > 题目详情
已知f(x)=ax3+bx2+cx在区间[0,1]上是减函数,在区间(-∞,0),(1,+∞)上是增函数,又f′(
1
2
)=-
3
2

(Ⅰ)求f(x)的解析式;
(Ⅱ)若f(x)≤m在区间x∈[0,2]恒成立,求m的取值范围.
考点:利用导数求闭区间上函数的最值,利用导数研究函数的单调性
专题:导数的综合应用
分析:(Ⅰ)根据函数的单调性建立条件关系即可,求f(x)的解析式;
(Ⅱ)求出函数f(x)在x∈[0,2]的最大值即可.
解答: 解:(Ⅰ)f′(x)=3ax2+2bx+c,由已知f′(0)=f′(1)=0,
c=0
3a+2b+c=0

解得
c=0
b=-
3
2
a

∴f′(x)=3ax2-3ax,
f′(
1
2
)=-
3
2
=
3a
4
+b

∴a=2,b=-3
∴f(x)=2x3-3x2
(Ⅱ)∵f(x)=2x3-3x2
∴f′(x)=6x2-6x=6x(x-1),
由f′(x)>0得x>1或x<0,此时函数单调递增,
由f′(x)<0,解得0<x<1.此时函数单调递减,
即当x∈[0,2]时,当x=2时,函数f(x)取得最大值f(2)=4,
又若f(x)≤m在区间x∈[0,2]恒成立,
∴m≥4.
点评:本题主要考查导数的应用,利用函数单调性和导数之间的关系求出函数的解析式是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

求函数f(x)=
x2
-4x-12的定义域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知|
a
|=2,|
b
|=4,若(2
a
+
b
)(
a
-
b
)=-4,求向量
a
b
的夹角.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的函数f(x)满足:f(x)=f(4-x)且f(2-x)+f(x-2)=0,若f(2)=1,则f(2014)的值是(  )
A、-1B、0C、1D、无法确定

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD的底面ABCD是正方形,棱PD⊥底面ABCD,PD=DC,E是PC的中点.
(1)证明:PA∥平面BDE;
(2)证明:AD⊥平面PDC
(3)证明:DE⊥平面PBC.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a,b(a,b∈N*)满足
1
a
+
9
b
=1
,则当a+b取最小值时,a、b的值分别是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=(a+1)lnx+ax2+1,讨论函数f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

(几何法)已知圆x2+y2+x-6y+m=0和直线x+2y-3=0交于P、Q两点,且OP⊥OQ(O为坐标原点),求该圆的圆心坐标及半径.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,若a=2,b-c=1,△ABC的面积为
3
,则
AB
AC
=
 

查看答案和解析>>

同步练习册答案