精英家教网 > 高中数学 > 题目详情
已知|
a
|=2,|
b
|=4,若(2
a
+
b
)(
a
-
b
)=-4,求向量
a
b
的夹角.
考点:数量积表示两个向量的夹角
专题:计算题,平面向量及应用
分析:运用向量的数量积的定义和性质:向量的平方即为模的平方,结合向量夹角的范围,计算即可得到.
解答: 解:由于|
a
|=2,|
b
|=4,
a
b
=|
a
|•|
b
|•cosθ=8cosθ,
由(2
a
+
b
)•(
a
-
b
)=-4,
则2
a
2
-
b
2
-
a
b
=-4,
即有
a
b
=8-16+4=-4,
则cosθ=-
1
2

由于0≤θ≤π,
则有θ=
3

则向量
a
b
的夹角为
3
点评:本题考查平面向量的数量积的定义和性质,考查向量的夹角的求法,考查运算能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知sinα+sinβ=1,cosα+cosβ=0,求sin2α+cos2β的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图是网络工作者经常用来解释网络运作的蛇形模型:数字1出现在第1行;数字2,3出现在第2行,数字6,5,4(从左至右)出现在第3行;数字7,8,9,10出现在第4行;…,以此类推,则第11行从左至右算第7个数字为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=
4-x2
|x-4|-4
的图象关于
 
对称.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x3
3
+
x2
4
,g(n)=(
1
2
n,(n∈N*),若f′(x)≥g(n)当x∈(-∞,λ]时恒成立.
(Ⅰ)当n=1时,求不等式f′(x)≥g(n)的解集;
(Ⅱ)求实常数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=xcosx在(0,+∞)内的全部极值点按从小到大的顺序排列为a1,a2,…,an,…,则对任意正整数n必有(  )
A、π<an+1-an
2
B、
π
2
<an+1-an<π
C、0<an+1-an
π
2
D、-
π
2
<an+1-an<0

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=x3-bx+1有且仅有两个不同零点,则b的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=ax3+bx2+cx在区间[0,1]上是减函数,在区间(-∞,0),(1,+∞)上是增函数,又f′(
1
2
)=-
3
2

(Ⅰ)求f(x)的解析式;
(Ⅱ)若f(x)≤m在区间x∈[0,2]恒成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设x,y满足约束条件
x+y≤1
γ≤x
y≥-2
,则z=
x2+y2
的最大值为(  )
A、
13
B、13
C、2
2
D、8

查看答案和解析>>

同步练习册答案