| A. | (-$\frac{\sqrt{5}}{2}$,$\frac{\sqrt{5}}{2}$) | B. | [-$\frac{3}{2}$,$\frac{3}{2}$] | C. | [-$\frac{\sqrt{5}}{2}$,$\frac{3}{2}$] | D. | [-$\frac{3}{2}$,-$\frac{\sqrt{5}}{2}$)∪($\frac{\sqrt{5}}{2}$,$\frac{3}{2}$] |
分析 求出直线与圆相切时,k的值及直线过点(-1,2)时,k=$\frac{3}{2}$,直线过点(3,2)时,k=-$\frac{3}{2}$,即可得出结论.
解答 解:直线与圆相切时,圆心到直线的距离为$\frac{3}{\sqrt{{k}^{2}+1}}$=2,∴k=$±\frac{\sqrt{5}}{2}$.
直线过点(-1,2)时,k=$\frac{3}{2}$,直线过点(3,2)时,k=-$\frac{3}{2}$,
∴半圆(x-1)2+(y-2)2=4(y≥2)与直线y=k(x-1)+5有两个不同交点,实数k的取值范围是[-$\frac{3}{2}$,-$\frac{\sqrt{5}}{2}$)∪($\frac{\sqrt{5}}{2}$,$\frac{3}{2}$].
故选:D.
点评 本题考查直线与圆的位置关系,考查点到直线距离公式的运用,考查学生的计算能力,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | 1或0 | C. | 1 | D. | 1或2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | y=sin|x| | B. | y=cos|x| | C. | y=|tanx| | D. | y=-ln|sinx| |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | $-\frac{1}{2}$ | C. | $\frac{{\sqrt{3}}}{2}$ | D. | -$\frac{{\sqrt{3}}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com