精英家教网 > 高中数学 > 题目详情
1.已知半圆(x-1)2+(y-2)2=4(y≥2)与直线y=k(x-1)+5有两个不同交点,则实数k的取值范围是(  )
A.(-$\frac{\sqrt{5}}{2}$,$\frac{\sqrt{5}}{2}$)B.[-$\frac{3}{2}$,$\frac{3}{2}$]C.[-$\frac{\sqrt{5}}{2}$,$\frac{3}{2}$]D.[-$\frac{3}{2}$,-$\frac{\sqrt{5}}{2}$)∪($\frac{\sqrt{5}}{2}$,$\frac{3}{2}$]

分析 求出直线与圆相切时,k的值及直线过点(-1,2)时,k=$\frac{3}{2}$,直线过点(3,2)时,k=-$\frac{3}{2}$,即可得出结论.

解答 解:直线与圆相切时,圆心到直线的距离为$\frac{3}{\sqrt{{k}^{2}+1}}$=2,∴k=$±\frac{\sqrt{5}}{2}$.
直线过点(-1,2)时,k=$\frac{3}{2}$,直线过点(3,2)时,k=-$\frac{3}{2}$,
∴半圆(x-1)2+(y-2)2=4(y≥2)与直线y=k(x-1)+5有两个不同交点,实数k的取值范围是[-$\frac{3}{2}$,-$\frac{\sqrt{5}}{2}$)∪($\frac{\sqrt{5}}{2}$,$\frac{3}{2}$].
故选:D.

点评 本题考查直线与圆的位置关系,考查点到直线距离公式的运用,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.函数y=lgsinx+$\frac{1}{{\sqrt{cosx}}}$的定义域为(2kπ,2kπ+$\frac{π}{2}$),k∈Z.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知函数y=f(x)(a≤x≤b),集合M={(x,y)|y=f(x),a≤x≤b}∩{(x,y)|x=0},则集合M的子集的个数为(  )
A.2B.1或0C.1D.1或2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.下列四个函数:y=sin|x|,y=cos|x|,y=|tanx|,y=-ln|sinx|,以π为周期,在(0,$\frac{π}{2}$)上单调递减且为偶函数的是(  )
A.y=sin|x|B.y=cos|x|C.y=|tanx|D.y=-ln|sinx|

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.当a=3,b=5,c=7时,执行如图所示的程序框图,输出的m值为(  )
A.$\frac{1}{2}$B.$-\frac{1}{2}$C.$\frac{{\sqrt{3}}}{2}$D.-$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图1是一个长方体截去一个角所得多面体的直观图和三视图.(单位:cm)

(1)求该多面体的体积;
(2)在所给直观图中连结BC′,证明:BC′∥平面EFG.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设f(x)=|x|+|x+10|.
(Ⅰ)求f(x)≤x+15的解集M;
(Ⅱ)当a,b∈M时,求证:5|a+b|≤|ab+25|

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=bx-$\frac{b}{x}$+2alnx.(x∈R).
(1)若a=1时,函数f(x)在其定义域上不是单调函数,求实数b的取值范围;
(2)若b=1时,且当x1,x2∈(0,+∞)时,不等式[${\frac{{f({x_1})}}{x_2}$-$\frac{{f({x_2})}}{x_1}}$](x1-x2)>0恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设定义在R上的奇函数函数f(x)=k•2x+1+(k-3)•2-x
(1)求k的值.
(2)用定义证明f(x)在定义域内的单调性.
(3)若x∈[1,3]时,不等式f(x2-x)+f(tx+4)>0恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案