分析 根据函数成立的条件即可求函数的定义域.
解答 解:要使函数有意义,则$\left\{\begin{array}{l}{sinx>0}\\{cosx>0}\end{array}\right.$,
即$\left\{\begin{array}{l}{2kπ<x<2kπ+π,k∈Z}\\{2kπ-\frac{π}{2}<x<2kπ+\frac{π}{2},k∈Z}\end{array}\right.$,
即2kπ<x<2kπ+$\frac{π}{2}$,k∈Z,
即函数的定义域为(2kπ,2kπ+$\frac{π}{2}$),k∈Z,
故答案为:(2kπ,2kπ+$\frac{π}{2}$),k∈Z
点评 本题主要考查函数的定义域的求解,要求熟练掌握常见函数成立的条件.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-$\frac{\sqrt{5}}{2}$,$\frac{\sqrt{5}}{2}$) | B. | [-$\frac{3}{2}$,$\frac{3}{2}$] | C. | [-$\frac{\sqrt{5}}{2}$,$\frac{3}{2}$] | D. | [-$\frac{3}{2}$,-$\frac{\sqrt{5}}{2}$)∪($\frac{\sqrt{5}}{2}$,$\frac{3}{2}$] |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com