精英家教网 > 高中数学 > 题目详情

【题目】已知圆 (其中为圆心)上的每一点横坐标不变,纵坐标变为原来的一半,得到曲线.

1)求曲线的方程;

2若点为曲线上一点,过点作曲线的切线交圆于不同的两点(其中的右侧),已知点.求四边形面积的最大值.

【答案】12

【解析】试题分析:(1)曲线上任意一点,则上的点,从而可得曲线的方程为化简可得标准方程;(2),设根据判别式为零可得根据韦达定理、弦长公式以及三角形面积公式可得,同理可得利用基本不等式可得四边形面积的最大值.

试题解析(1)设曲线上任意一点,则上的点,

曲线

(2)易知直线的斜率存在,设

,即

因为,设点到直线的距离为

,易知

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】(本小题满分12)

已知函数,.

)求的定义域;

)判断的奇偶性并予以证明;

)当时,求使的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,以原点O为极点,x轴正半轴为极轴建立极坐标系.若曲线C的极坐标方程为ρcos2θ﹣4sinθ=0,P点的极坐标为 ,在平面直角坐标系中,直线l经过点P,斜率为
(Ⅰ)写出曲线C的直角坐标方程和直线l的参数方程;
(Ⅱ)设直线l与曲线C相交于A,B两点,求 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,多面体EF﹣ABCD中,ABCD是正方形,AC、BD相交于O,EF∥AC,点E在AC上的射影恰好是线段AO的中点.
(Ⅰ)求证:BD⊥平面ACF;
(Ⅱ)若直线AE与平面ABCD所成的角为60°,求平面DEF与平面ABCD所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥PABC中,PAABPABCABBCPAABBC=2,D为线段AC的中点,E为线段PC上一点.

(1)求证:PABD

(2)求证:平面BDE平面PAC

(3)PA平面BDE时,求三棱锥EBCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某几何体的三视图如图所示,则该几何体的表面积为( )

A.45
B.
C.
D.60

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图下图①,等边三角形ABC的边长为2a,CD是AB边上的高,E,F分别是AC和BC边上的点,且满足=k,现将△ABC沿CD翻折成直二面角ADCB,如图下图②.

(1)试判断翻折后直线AB与平面DEF的位置关系,并说明理由;

(2)求二面角BACD的正切值.

  ②

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】农科院的专家为了了解新培育的甲、乙两种麦苗的长势情况,从甲、乙两种麦苗的试验田中各抽取6株麦苗测量麦苗的株高,数据如下:(单位:cm)

甲:9,10,11,12,10,20

乙:8,14,13,10,12,21.

(1)在给出的方框内绘出所抽取的甲、乙两种麦苗株高的茎叶图;

(2)分别计算所抽取的甲、乙两种麦苗株高的平均数与方差,并由此判断甲、乙两种麦苗的长势情况.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】证明:△ABC是等边三角形的充要条件是a2+b2+c2=ab+bc+ac(其中a,b,c△ABC的三条边).

查看答案和解析>>

同步练习册答案