精英家教网 > 高中数学 > 题目详情

【题目】选修4-4:坐标系与参数方程

在极坐标系中,圆的极坐标方程为: .若以极点为原点,极轴所在直线为轴建立平面直角坐标系.

(Ⅰ)求圆的参数方程;

(Ⅱ)在直角坐标系中,点是圆上动点,试求的最大值,并求出此时点的直角坐标.

【答案】12取到最大值为6.

【解析】试题分析:(Ⅰ)由,利用化简整理,可得圆的直角坐标方程,从而可得其参数方程;(Ⅱ)利用圆的参数方程,表示出,通过两角和与差的三角函数化简,利用三角函数的有界性求解最大值,并求出此时点的直角坐标.

试题解析:(Ⅰ)因为

,即为圆C的直角坐标方程.

所以所求的圆的参数方程为 (为参数) .

(Ⅱ)由(Ⅰ)可得,

时,即点的直角坐标为时, 取到最大值为6.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】(2017·贵州适应性考试)如图,在正方体ABCDA1B1C1D1中,点P是线段A1C1上的动点,则三棱锥PBCD 的俯视图与正视图面积之比的最大值为(  )

A. 1 B.

C. D. 2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱中, 平面 .过的平面交于点,交于点.

(l)求证: 平面

(Ⅱ)求证:

(Ⅲ)记四棱锥的体积为,三棱柱的体积为.若,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

已知 函数.

解关于的不等式

若函数的最大值为2,求证: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列各项均为正数, ,且对任意恒成立,记的前项和为.

(1)若,求的值;

(2)证明:对任意正实数 成等比数列;

(3)是否存在正实数,使得数列为等比数列.若存在,求出此时的表达式;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙、丙三人参加微信群抢红包游戏,规则如下:每轮游戏发个红包,每个红包金额为元,已知在每轮游戏中所产生的个红包金额的频率分布直方图如图所示

1的值,并根据频率分布直方图,估计红包金额的众数;

2以频率分布直方图中的频率作为概率,若甲、乙、丙三人从中各抢到一个红包,其中金额在的红包个数为,求的分布列和期望

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数有极值,且在处的切线与直线垂直.

(1)求实数的取值范围;

(2)是否存在实数,使得函数的极小值为.若存在,求出实数的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,直线的参数方程为为参数),在以原点为极点, 轴正半轴为极轴的极坐标系中,圆的方程为

(1)写出直线的普通方程和圆的直角坐标方程;

(2)设点,直线与圆相交于两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定圆,定直线,过的一条动直线与直线相交于,与圆相交于 两点, 中点.

)当垂直时,求证: 过圆心

)当,求直线的方程.

)设,试问是否为定值,若为定值,请求出的值;若不为定值,请说明理由.

查看答案和解析>>

同步练习册答案