精英家教网 > 高中数学 > 题目详情
(10分)P为椭圆上一点,为左右焦点,若
(1)   求△的面积;
(2)   求P点的坐标.(12分)
a=5,b=3c=4 (1)设,则 ①
 ②,由①2-②得   
       
(2)设P,由得  4,将 代入椭圆方程解得
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知圆x2+y2=9,从这个圆上任一点P向x轴作垂线PP′,点P′为垂足,点M在PP′上,并且
PM
=
1
2
MP′

(1)求点M的轨迹.
(2)若F1(-
5
,0)
F2(
5
,0)
求|MF1||MF2|的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的离心率,左、右焦点分别为,定点P,点在线段的中垂线上.
(1)求椭圆C的方程;
(2)设直线与椭圆C交于M、N两点,直线的倾斜角分别为,求证:直线过定点,并求该定点的坐标.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知圆的半径为定长是圆所在平面内一定点,是圆上任意一点,线段的垂直平分线与直线相交于点,当在圆上运动时,点的轨迹可能是下列图形中的:               .(填写所有可能图形的序号)
①点;②直线;③圆;④抛物线;⑤椭圆;⑥双曲线;⑦双曲线的一支.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知曲线的极坐标方程为,直线的参数方程是:  .
(Ⅰ)求曲线的直角坐标方程,直线的普通方程;
(Ⅱ)求曲线与直线交与两点,求长.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分16分;第(1)小题5分,第(2)小题5分,第(3)小题6分)
为坐标平面上的点,直线为坐标原点)与抛物线交于点(异于).
(1)      若对任意,点在抛物线上,试问当为何值时,点在某一圆上,并求出该圆方程
(2)      若点在椭圆上,试问:点能否在某一双曲线上,若能,求出该双曲线方程,若不能,说明理由;
(3)      对(1)中点所在圆方程,设是圆上两点,且满足,试问:是否存在一个定圆,使直线恒与圆相切.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设抛物线的准线与对称轴相交于点,过点作抛物线的切线,
切线方程是        

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知为椭圆的两个焦点,过的直线交椭圆于两点,若,则=       

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
已知点A(15,0),点P是圆上的动点,M为线段PA的中点,当点P在圆上运动时,求动点M的轨迹方程.

查看答案和解析>>

同步练习册答案