精英家教网 > 高中数学 > 题目详情
16.已知数列{bn}是各项均为正的等比数列,且b1=8,b2+b3=160.
(1)求数列{bn}的通项公式;
(2)设an=2n+1,Gn=a1•b1+a2•b2+…+an•bn ,求Gn

分析 (1)运用等比数列的通项公式,解方程可得q=4,进而得到通项公式;
(2)运用数列的求和方法:错位相减法,结合等比数列的求和公式,即可得到.

解答 解:(1)设数列{bn}的公比为q,由题意可得
8q+8q2=160,
解得q=4(-5舍去),
则bn=8•4n-1=2•4n=22n+1
(2)Gn=a1•b1+a2•b2+…+an•bn
=3•23+5•25+…+(2n+1)•22n+1
4Gn=3•25+5•27+…+(2n+1)•22n+3
两式相减可得-3Gn=24+2(25+27+…+22n+1)-(2n+1)•22n+3
=24+2($\frac{32(1-{4}^{n-1})}{1-4}$)-(2n+1)•22n+3
化简可得,Gn=$\frac{(1+6n)•{2}^{2n+3}-8}{9}$.

点评 本题考查等比数列的通项公式和求和公式的运用,考查数列的求和方法:错位相减法,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.函数f(x)=Asin(ωx+φ)(A>0,ω>0)的部分图象如图所示,则f(2015)=-$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,某市三个新兴工业小区A,B,C决定平均投资共同建一个中心医院O,使得医院到三个小区的距离相等,已知这三个小区之间的距离分别为AB=4.3km,BC=3.7km,CA=4.7km,该医院应建在何处(精确到0.1km或1°)?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知不等式$\frac{mx+1}{mx-1}$>0的解为{x|x<-1或x>1},求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.己知在等比数列{an}中,2a2=a1+a3-1,a1=1,数列{bn}满足b1$+\frac{{b}_{2}}{2}$$+\frac{{b}_{3}}{3}$+…$+\frac{{b}_{n}}{n}$=an(n∈N*).
(Ⅰ)求数列{bn}的通项公式;
(Ⅱ)设数列{bn}的前n项和为Sn,若?n∈N+,Sn>λan恒成立,求λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知|$\overrightarrow{OA}$|=$\sqrt{3}$,|$\overrightarrow{OB}$|=3,$\overrightarrow{OA}$•$\overrightarrow{OB}$=0,点C在∠AOB内,且∠AOC=30°,设$\overrightarrow{OC}$=m$\overrightarrow{OA}$+n$\overrightarrow{OB}$(m,n∈R),则$\frac{m}{n}$等于(  )
A.$\frac{1}{3}$B.3C.$\frac{\sqrt{3}}{3}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知函数f(x)=2sin(π+x)sin(x+$\frac{π}{3}$+φ)的图象关于原点对称,其中φ∈(0,π),则函数g(x)=cos(2x-φ)的图象.(  )
A.关于点($\frac{π}{12},0$)对称
B.可由函数f(x)的图象向右平移$\frac{π}{3}$个单位得到
C.可由函数f(x)的图象向左平移$\frac{π}{6}$个单位得到
D.可由函数f(-x)的图象向右平移$\frac{π}{12}$个单位得到

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.用适当的方法表示下列集合:
(1)绝对值等于5的全体实数组成的集合;
(2)所有正方形组成的集合;
(3)除以3余1的所有整数组成的集合;
(4)构成英文单词mathematics(数学)的全部字母.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在△ABC中,角A、B、C的对边分别是a、b、c满足b2+c2=bc+a2
(1)求角A的大小;
(2)若a=2,△ABC的面积为$\sqrt{3}$,求b,c.

查看答案和解析>>

同步练习册答案