精英家教网 > 高中数学 > 题目详情
曲线y=x3+x2-1在点P(-1,-1)处的切线方程是
 
考点:利用导数研究曲线上某点切线方程
专题:计算题,导数的概念及应用
分析:求出曲线y=x3+x2-1在点P(-1,-1)处的导数值,这个导数值即函数图象在该点处的切线的斜率,然后根据直线的点斜式方程求解即可.
解答: 解:因为y=x3+x2-1,
所以y′=3x2+2x,
曲线y=x3+x2-1在点P(-1,-1)处的切线的斜率为:y′|x=1=1.
此处的切线方程为:y+1=x+1,即y=x.
故答案为:y=x.
点评:本题考查导数的几何意义、关键是求出直线的斜率,正确利用直线的点斜式方程,考查计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,a,b,c分剐是角A,B,C的对边,且3cosAcosC(tanAtanC-1)=1.
(Ⅰ)求sin(2B-
6
)的值;
(Ⅱ)若a+c=
3
3
2
,b=
3
,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

为了解甲、乙两个班级某次考试的数学成绩,从甲、乙两个班级中分别随机抽取5名学生的成绩(单位:分)作样本,如图是样本的茎叶图:
(1)分别计算甲、乙两个班级数学成绩的样本的平均数;
(2)从甲、乙两个班级数学成绩的样本中各随机抽取1名同学的数学成绩,求抽到的成绩之差的绝对值不低于20的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2cos2x+2sinxsin(x+
π
2
),
(Ⅰ)求函数f(x)的最小正周期;
(Ⅱ)求函数f(x)在区间[0,
π
2
]上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

甲、乙两个工厂,甲厂位于一直线河岸的岸边A处,乙厂与甲厂在河的同侧,乙厂位于离河岸40千米的B处,乙厂到河岸的垂足D与A相距50千米,两厂要在此岸边AD之间合建一个供水站C,从供水站到甲厂和乙厂的水管费用分别为每千米3a元和5a元,若CD=x千米,设总的水管费用为y元,如图所示,
(Ⅰ)写出y关于x的函数表达式;
(Ⅱ)问供水站C建在岸边何处才能使水管费用最省?

查看答案和解析>>

科目:高中数学 来源: 题型:

曲线 f(x)=e3x在点(0,1)处的切线方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知不等式(12-mn)•(lnm-lnn)≥0对任意正整数n恒成立,则实数m的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=x3-2x在x=1处的切线方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在极坐标系中,设极径为ρ(ρ>0),极角为θ(0≤θ<2π),⊙A的极坐标方程为ρ=2cosθ,点C在极轴的上方,∠AOC=
 π 
6
.△OPQ是以OQ为斜边的等腰直角三角形,若C为OP的中点,求点Q的极坐标.

查看答案和解析>>

同步练习册答案