分析 (1)由条件利用同角三角函数的基本关系求得要求式子的值.
(2)由条件利用对数的运算性质,求得要求式子的值.
解答 解:(1)法(一):$\frac{sinα+3cosα}{sinα-cosα}=\frac{tanα+3}{tanα-1}=\frac{{\frac{1}{3}+3}}{{\frac{1}{3}-1}}=-5$.
法(二):由$tanα=\frac{1}{3}$,即$\frac{sinα}{cosα}=\frac{1}{3}$,可得cosα=3sinα,
∴$\frac{sinα+3cosα}{sinα-cosα}=\frac{sinα+3×3sinα}{sinα-3sinα}=-5$.
(2)原式=lg(25×4)+2+1=5.
点评 本题主要考查同角三角函数的基本关系,对数的运算性质,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2x-y+1=0 | B. | 2x-4y+2=0 | C. | 2x+4y+1=0 | D. | 2x-4y+1=0 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 30° | B. | 45° | C. | 60° | D. | 75° |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com