精英家教网 > 高中数学 > 题目详情
14.已知四边形ABCD是矩形,AB=1,AD=2,E,F分别是线段AB,BC的中点,PA⊥平面ABCD.
(1)求证:DF⊥平面PAF;
(2)若∠PBA=45°,求三棱锥C-PFD的体积;
(3)在棱PA上是否存在一点G,使得EG∥平面PFD,若存在,请求出$\frac{AG}{AP}$的值,若不存在,请说明理由.

分析 (1)由勾股定理的逆定理可得DF⊥AF,由PA⊥平面ABCD得PA⊥DF,故而DF⊥平面PAF;
(2)根据PA⊥AB,∠PBA=45°可得PA=1,把△CDF作棱锥的底面,则PA为棱锥的高;
(3)过E作EH∥DF交AD于H,过H作HG∥PD,则平面EGH∥平面PDF,根据长方形的性质和平行线等分线段成比例定理可求得$\frac{AG}{AP}$的值.

解答 解:(1)在矩形ABCD中,∵F是BC的中点,AB=1,AD=2,
∴AF=DF=$\sqrt{2}$,∴AF2+DF2=4=AD2
∴DF⊥AF.
∵PA⊥平面ABCD,DF?平面ABCD,
∴PA⊥DF,
又∵PA?平面PAF,AF?平面PAF,PA∩AF=A,
∴DF⊥平面PAF.
(2)∵PA⊥平面ABCD,AB?平面ABCD,
∴PA⊥AB,∵∠PBA=45°,
∴PA=AB=1.
∴三棱锥C-PFD的体积V=$\frac{1}{3}$S△CDF×PA=$\frac{1}{3}×\frac{1}{2}×1×1×1$=$\frac{1}{6}$.
(3)过E作EH∥DF交AD于H,过H作HG∥PD,
则平面EGH∥平面PDF,
∴EG∥平面PDF.
∵EH∥DF,∴$\frac{AH}{AD}=\frac{1}{4}$,
又∵HG∥PD,∴$\frac{AG}{AP}=\frac{AH}{AD}=\frac{1}{4}$.

点评 本题考查了线面垂直的性质与判定,线面平行的判定,棱锥的体积计算,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知A(x1,y1),B(x2,y2),C(x0,y0).
(1)用x1,x2,y1,y2表示AB之间的距离,
(2)若x1=2,x2=0,y1=0,y2=4,点C在AB的延长线上,满足AB=$\frac{1}{2}$AC,求C点坐标,
(3)若x1=2cos(x-$\frac{π}{6}$),x2=1,y1=0,y2=sin(x-$\frac{π}{6}$),f(x)=|$\overrightarrow{AB}$|2,若对任意x∈[0,$\frac{π}{2}$],都有f(x)∈[m,n],求n-m的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.求函数的奇偶性
(1)f(x)=cos($\frac{1}{2}$x-$\frac{3π}{2}$);
(2)f(x)=|sinx|+cosx.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)与直线y=2x无交点,则离心率e的取值范围是(  )
A.(1,2)B.(1,2]C.(1,$\sqrt{5}$)D.(1,$\sqrt{5}$]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.把三进制数1021(3)化为十进制数等于(  )
A.102B.34C.12D.46

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设F1、F2是椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的左、右焦点,P为直线$x=-\frac{4}{3}a$上一点,△F1PF2是底角为30°的等腰三角形,则此椭圆C的离心率为(  )
A.$\frac{2}{3}$B.$\frac{1}{2}$C.$\frac{3}{4}$D.$\frac{8}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.椭圆$\frac{x^2}{25}+\frac{y^2}{9}=1$的左焦点为F1,P为椭圆上的动点,M是圆${x^2}+{({y-2\sqrt{5}})^2}=1$上的动点,则|PM|+|PF1|的最大值是17.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.设椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左、右焦点分别为F1,F2,右顶点为A,上顶点为B,已知$|AB|=\frac{{\sqrt{3}}}{2}|{F_1}{F_2}|$,则C的离心率为$\frac{{\sqrt{2}}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.(1)已知$tanα=\frac{1}{3}$,求$\frac{sinα+3cosα}{sinα-cosα}$的值.
(2)求$lg25+lg4+{7^{{{log}_7}2}}+{(-9.8)^0}$.

查看答案和解析>>

同步练习册答案