精英家教网 > 高中数学 > 题目详情
3.设椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左、右焦点分别为F1,F2,右顶点为A,上顶点为B,已知$|AB|=\frac{{\sqrt{3}}}{2}|{F_1}{F_2}|$,则C的离心率为$\frac{{\sqrt{2}}}{2}$.

分析 由题意作图,从而可得|AB|2=a2+b2,|F1F2|2=4c2,再结合$|AB|=\frac{{\sqrt{3}}}{2}|{F_1}{F_2}|$,化简可得a2=2c2,从而求得.

解答 解:由题意作图如下,

由题意知,|AB|2=a2+b2,|F1F2|2=4c2
∵$|AB|=\frac{{\sqrt{3}}}{2}|{F_1}{F_2}|$,
∴a2+b2=$\frac{3}{4}$•4c2
即a2+a2-c2=3c2
即a2=2c2
故e=$\frac{c}{a}$=$\frac{{\sqrt{2}}}{2}$,
故答案为:$\frac{{\sqrt{2}}}{2}$.

点评 本题考查了圆锥曲线的性质应用,同时考查了学生的作图能力及数形结合的思想应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.某市举行“职工技能大比武”活动,甲厂派出2男1女共3名职工,乙厂派出2男2女共4名职工.
(1)若从甲厂和乙厂派出的职工中各任选1名进行比赛,求选出的2名职工性别相同的概率;
(2)若从甲厂和乙厂派出的这7名职工中任选2名进行比赛,求选出的2名职工来自同一工厂的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知四边形ABCD是矩形,AB=1,AD=2,E,F分别是线段AB,BC的中点,PA⊥平面ABCD.
(1)求证:DF⊥平面PAF;
(2)若∠PBA=45°,求三棱锥C-PFD的体积;
(3)在棱PA上是否存在一点G,使得EG∥平面PFD,若存在,请求出$\frac{AG}{AP}$的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知集合A={x|-1≤x<1},B={-1,0,1},则A∩B=(  )
A.{0,1}B.{-1,0}C.{0}D.{-1,0,1}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若α是第二象限角,则$\frac{α}{2}$是第(  )象限角.
A.二、三B.一、二C.二、四D.一、三

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.将函数$f(x)=\sqrt{3}sin(\frac{π}{2}x+\frac{π}{3})$的图象上各点的横坐标变为原来的π倍,将所得图象向右平移$\frac{2π}{3}$个单位,再向上平移1个单位,得到函数y=g(x)的图象,则函数y=g(x)的解析式是(  )
A.$g(x)=\sqrt{3}sin\frac{x}{2}-1$B.$g(x)=\sqrt{3}sin\frac{x}{2}+1$C.$g(x)=\sqrt{3}sin\frac{{{π^2}x}}{2}-1$D.$g(x)=\sqrt{3}sin\frac{{{π^2}x}}{2}+1$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.函数$f(x)=sin(x-\frac{π}{3})cosx$在区间$[{\frac{π}{6},\frac{π}{3}}]$上的最大值为0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.先后抛掷两枚均匀的正方体骰子,观察向上的点数,问:
(1)共有多少种不同的结果?
(2)所得点数之和是12的概率是多少?
(3)所得点数之和是4的倍数的概率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若2x+2y=1,则x+y的最大值是-2.

查看答案和解析>>

同步练习册答案