精英家教网 > 高中数学 > 题目详情
2.若实数x,y满足$\left\{\begin{array}{l}{x-y+1≥0}\\{x+y≥0}\\{y-3x+1≥0}\end{array}\right.$,则z=x+2y的最小值是(  )
A.-3B.$\frac{3}{2}$C.-$\frac{1}{4}$D.-$\frac{3}{2}$

分析 根据已知的约束条件画出满足约束条件的可行域,再用目标函数的几何意义,求出目标函数的最小值.

解答 解:实数x,y满足$\left\{\begin{array}{l}{x-y+1≥0}\\{x+y≥0}\\{y-3x+1≥0}\end{array}\right.$对应的平面区域如下图示的阴影部分:
z=x+2y经过可行域的A时,取得最小值.
由$\left\{\begin{array}{l}{x+y=0}\\{y-3x+1=0}\end{array}\right.$可得A($\frac{1}{4}$,-$\frac{1}{4}$),此时z=$\frac{1}{4}-\frac{1}{2}$=-$\frac{1}{4}$.
故选:C.

点评 用图解法解决线性规划问题时,分析题目的已知条件,找出约束条件和目标函数是关键,然后将可行域各角点的值一一代入,最后比较,即可得到目标函数的最优解.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.执行如图所示的算法,则输出的S的值是14.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知复数z,满足z(1+3i)=10i,则z的虚部为(  )
A.1B.iC.-1D.-i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知数列{an}满足,a1=1,an=$\frac{1}{{a}_{n+1}}$-$\frac{1}{2}$.
(1)求证:an≥$\frac{2}{3}$;
(2)求证:|an+1-an|≤$\frac{1}{3}$;
(3)求证:|a2n-an|≤$\frac{10}{27}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.z1=-3-4i,z2=(n2-3m-1)+(n2-m-6)i,且z1=z2,则实数m=2,n=±2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在三棱柱ABC-A1B1C1中,AC=BC=2,∠ACB=120°,D为A1B1的中点.
(Ⅰ)证明:A1C∥平面BC1D;
(Ⅱ)若A1A=A1C,点A1在平面ABC的射影在AC上,且BC与平面BC1D所成角的正弦值为$\frac{\sqrt{15}}{5}$,求三棱柱ABC-A1B1C1的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若复数$z=\frac{m+2i}{1+i}$(i为虚数单位,m∈R)的实部为-1,则m=(  )
A.0B.1C.-4D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知点A(2,1),点P的坐标值x,y满足$\left\{\begin{array}{l}{2x-y≤0}\\{x+y≤3}\\{x≥0}\end{array}\right.$,若O为坐标原点,则$\overrightarrow{OA}•\overrightarrow{OP}$的最大值是(  )
A.$\frac{{4\sqrt{5}}}{5}$B.$-\frac{{4\sqrt{5}}}{5}$C.4D.-4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=$\sqrt{a{x}^{2}+bx+5}$的定义域为{x|-1≤x≤5},求a+b的值.

查看答案和解析>>

同步练习册答案