精英家教网 > 高中数学 > 题目详情
10.已知数列{an}满足,a1=1,an=$\frac{1}{{a}_{n+1}}$-$\frac{1}{2}$.
(1)求证:an≥$\frac{2}{3}$;
(2)求证:|an+1-an|≤$\frac{1}{3}$;
(3)求证:|a2n-an|≤$\frac{10}{27}$.

分析 (1)由a1=1,an=$\frac{1}{{a}_{n+1}}$-$\frac{1}{2}$.可得a2,a3,a4,猜想:$\frac{2}{3}$≤an≤1.利用数学归纳法证明即可.
(2)当n=1时,$|{a_1}-{a_2}|=\frac{1}{3}$,当n≥2时,$({a_n}+\frac{1}{2})({a_{n-1}}+\frac{1}{2})=({a_n}+\frac{1}{2})•\frac{1}{a_n}=1+\frac{1}{{2{a_n}}}≥1+\frac{1}{2}=\frac{3}{2}$,利用不等式的性质进而得出结论.
(3)当n=1时,|a2-a1|=$\frac{1}{3}$<$\frac{10}{27}$;当n≥2时,|a2n-an|≤|a2n-a2n-1|+|a2n-1-a2n-2|+…+|an+1-an|,通过放缩即可证明.

解答 证明:(1)∵a1=1,an=$\frac{1}{{a}_{n+1}}$-$\frac{1}{2}$.
∴a2=$\frac{2}{3}$,a3=$\frac{6}{7}$,a4=$\frac{14}{19}$,
猜想:$\frac{2}{3}$≤an≤1.
下面用数学归纳法证明.
(i)当n=1时,命题显然成立;
(ii)假设n=k时,$\frac{2}{3}≤{a}_{k}$≤1成立,
则当n=k+1时,ak+1=$\frac{1}{{a}_{k}+\frac{1}{2}}$≤$\frac{1}{\frac{2}{3}+\frac{1}{2}}$<1.
${a_{k+1}}=\frac{1}{{{a_k}+\frac{1}{2}}}≥\frac{1}{{1+\frac{1}{2}}}=\frac{2}{3}$,即当n=k+1时也成立,
所以对任意n∈N*,都有$\frac{2}{3}≤{a_n}≤1$.
(2)当n=1时,$|{a_1}-{a_2}|=\frac{1}{3}$,
当n≥2时,∵$({a_n}+\frac{1}{2})({a_{n-1}}+\frac{1}{2})=({a_n}+\frac{1}{2})•\frac{1}{a_n}=1+\frac{1}{{2{a_n}}}≥1+\frac{1}{2}=\frac{3}{2}$,
∴$|{a_{n+1}}-{a_n}|=|{\frac{1}{{{a_n}+\frac{1}{2}}}-\frac{1}{{{a_{n-1}}+\frac{1}{2}}}}|=\frac{{|{a_n}-{a_{n-1}}|}}{{({a_n}+\frac{1}{2})({a_{n-1}}+\frac{1}{2})}}≤\frac{2}{3}|{a_n}-{a_{n-1}}|$$≤…≤{({\frac{2}{3}})^{n-1}}|{a_2}-{a_1}|=\frac{1}{3}•{({\frac{2}{3}})^{n-1}}$.
(3)当n=1时,|a2-a1|=$\frac{1}{3}$<$\frac{10}{27}$;
当n≥2时,|a2n-an|≤|a2n-a2n-1|+|a2n-1-a2n-2|+…+|an+1-an|$≤\frac{1}{3}[{{{({\frac{2}{3}})}^{2n-2}}+{{({\frac{2}{3}})}^{2n-3}}+…+{{({\frac{2}{3}})}^{n-1}}}]={({\frac{2}{3}})^{n-1}}-{({\frac{2}{3}})^{2n-1}}≤\frac{2}{3}-{({\frac{2}{3}})^3}=\frac{10}{27}$.

点评 本题考查了数列递推关系、不等式的性质、数学归纳法、等比数列的通项公式与求和公式、放缩法,考查了推理能力与计算能力,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.已知A={0,1,2},B={-1,3},记:A+B={a+b|a∈A,b∈B},试用列举法表示A+B={-1,0,1,3,4,5}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知$\overrightarrow{a}$=(3,-1),$\overrightarrow{b}$=(1,-2),求$\overrightarrow{a}$$•\overrightarrow{b}$,|$\overrightarrow{a}$|,|$\overrightarrow{b}$|,<$\overrightarrow{a}$,$\overrightarrow{b}$>

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知集合A={x|$\frac{1}{2}$<2x≤2},B={x|y=ln(x-$\frac{1}{2}$)},则A∩B=(  )
A.$(\frac{1}{2},1]$B.(-1,1]C.$(-1,\frac{1}{2}]$D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.抛物线y2=mx(m<0)的焦点与双曲线$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{5}$=1的一个焦点重合,则m=-12,抛物线的准线方程为x=3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.某校三位学生参加省举行的数学团体竞赛,对于其中一题,他们各自解出的概率分别是$\frac{1}{5},\frac{1}{3},\frac{1}{4}$,则此题能解出的概率是(  )
A.$\frac{1}{60}$B.$\frac{3}{20}$C.$\frac{13}{30}$D.$\frac{3}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若实数x,y满足$\left\{\begin{array}{l}{x-y+1≥0}\\{x+y≥0}\\{y-3x+1≥0}\end{array}\right.$,则z=x+2y的最小值是(  )
A.-3B.$\frac{3}{2}$C.-$\frac{1}{4}$D.-$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.集合A={x|x2-3x-10≤0},集合B={x|m+2≤x≤2m-1}.
(Ι) 若B⊆A,求实数m的取值范围;
(ΙΙ) 当x∈R时,没有元素x使x∈A与x∈B同时成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知f(x)=x2+2f′(1)x,则${∫}_{0}^{1}$($\sqrt{1-{x}^{2}}$+f(x))dx=(  )
A.$\frac{2}{3}$+$\frac{π}{2}$B.-$\frac{2}{3}$+$\frac{π}{2}$C.$\frac{5}{3}$+$\frac{π}{4}$D.-$\frac{5}{3}$+$\frac{π}{4}$

查看答案和解析>>

同步练习册答案