精英家教网 > 高中数学 > 题目详情
18.已知集合A={x|$\frac{1}{2}$<2x≤2},B={x|y=ln(x-$\frac{1}{2}$)},则A∩B=(  )
A.$(\frac{1}{2},1]$B.(-1,1]C.$(-1,\frac{1}{2}]$D.

分析 分别求出A与B中不等式的解集确定出A与B,找出A与B的交集即可.

解答 解:由A中不等式变形得:2-1<2x≤21
解得:-1<x≤1,即A=(-1,1],
由B中y=ln(x-$\frac{1}{2}$),得到x-$\frac{1}{2}$>0,
解得:x>$\frac{1}{2}$,即B=($\frac{1}{2}$,+∞),
则A∩B=($\frac{1}{2}$,1],
故选:A.

点评 此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.用数学归纳法证明$1+\frac{1}{2}+\frac{1}{3}+…+\frac{1}{2^n}<F(n)$时,由n=k不等式成立,证明n=k+1时,左边应增加的项数是2k

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.在△ABC中,A,B,C所对的边长分别为a,b,c,且满足$cosA=\frac{3}{5}$,$\overrightarrow{AB}•\overrightarrow{AC}=3$,则△ABC的面积为(  )
A.2B.$\frac{3}{2}$C.3D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设实数x,y满足$\left\{\begin{array}{l}{x-2y+7≤0}\\{x+y-5≥0}\\{2x-y-4≥0}\end{array}\right.$,则z=x+2y的最值情况正确的是(  )
A.最小值为7,最大值为17B.最小值为9,最大值为17
C.最小值为17,无最大值D.最大值为17,无最小值

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知复数z,满足z(1+3i)=10i,则z的虚部为(  )
A.1B.iC.-1D.-i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设f(x)的定义域是R,则下列命题中不正确的是(  )
A.若f(x)是奇函数,则f(f(x))也是奇函数
B.若f(x)是周期函数,则f(f(x))也是周期函数
C.若f(x)是单调递减函数,则f(f(x))也是单调递减函数
D.若方程f(x)=x有实根,则方程f(f(x))=x也有实根

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知数列{an}满足,a1=1,an=$\frac{1}{{a}_{n+1}}$-$\frac{1}{2}$.
(1)求证:an≥$\frac{2}{3}$;
(2)求证:|an+1-an|≤$\frac{1}{3}$;
(3)求证:|a2n-an|≤$\frac{10}{27}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在三棱柱ABC-A1B1C1中,AC=BC=2,∠ACB=120°,D为A1B1的中点.
(Ⅰ)证明:A1C∥平面BC1D;
(Ⅱ)若A1A=A1C,点A1在平面ABC的射影在AC上,且BC与平面BC1D所成角的正弦值为$\frac{\sqrt{15}}{5}$,求三棱柱ABC-A1B1C1的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.过抛物线y=4x2的焦点作直线交抛物线于A(x1,y1),B(x2,y2)两点,若y1+y2=5,则线段AB的长为$\frac{41}{8}$.

查看答案和解析>>

同步练习册答案