| A. | 最小值为7,最大值为17 | B. | 最小值为9,最大值为17 | ||
| C. | 最小值为17,无最大值 | D. | 最大值为17,无最小值 |
分析 约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,求出最优解的坐标,代入目标函数得答案.
解答
解:由实数x,y满足$\left\{\begin{array}{l}{x-2y+7≤0}\\{x+y-5≥0}\\{2x-y-4≥0}\end{array}\right.$,得到可行域如图:目标函数经过图中B时最小,由$\left\{\begin{array}{l}{x+y-5=0}\\{2x-y-4=0}\end{array}\right.$得到B(3,2),
所以z=x+2y的最小值为7;
目标函数经过可行域的C,函数取得最大值;由$\left\{\begin{array}{l}{x-2y+7=0}\\{2x-y-4=0}\end{array}\right.$,解得C(5,6).目标函数的最大值为:17.
故选:A.
点评 本题考查简单的线性规划,考查数形结合的解题思想方法,是中档题.
科目:高中数学 来源: 题型:选择题
| A. | B. | C. | D. |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [0,+∞) | B. | (-∞,0] | C. | (-∞,0]∪[4,+∞) | D. | [0,4] |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $(\frac{1}{2},1]$ | B. | (-1,1] | C. | $(-1,\frac{1}{2}]$ | D. | ∅ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{60}$ | B. | $\frac{3}{20}$ | C. | $\frac{13}{30}$ | D. | $\frac{3}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com