精英家教网 > 高中数学 > 题目详情
14.已知二次函数f(x)满足f(2+x)=f(2-x),且f(x)在[0,2]上是增函数,若f(a)≥f(0),则实数a的取值范围是(  )
A.[0,+∞)B.(-∞,0]C.(-∞,0]∪[4,+∞)D.[0,4]

分析 先求出函数的对称轴,根据函数的对称性,求出函数的单调区间,从而求出a的范围.

解答 解:∵f(x)满足f(2+x)=f(2-x),
∴对称轴是x=2,
又f(x)在[0,2]上是增函数,
则抛物线的开口向下,且f(x)在[2,4]上是减函数,
∵f(a)≥f(0),则f(a)≥f(4),
所以根据二次函数的单调性并结合图象可得:
0≤a≤4.
故选:D.

点评 本题考查了二次函数的性质,考查函数的单调性,对称性,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.计算(lg3+2lg2-lg10)÷lg1.2的结果为1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.从6个正方形拼成的12个顶点(如图)中任取3个顶点作为一组,其中可以构成三角形的组数为(  )
A.208B.204C.200D.196

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.随着移动互联网时代的到来,手机的使用非常普遍,“低头族”随处可见.某校为了解家长和教师对学生带手机进校园的态度,随机调查了100位家长和教师,得到情况如下表:
教师家长
反对4020
支持2020
(1)是否有95%以上的把握认为“带手机进校园与身份有关”,并说明理由;
(2)把以上频率当概率,随机抽取3位教师,记其中反对学生带手机进校园的人数为X,求随机变量X的分布列和数学期望.
附:${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$
P(K2≥k00.0500.0100.001
k03.8416.63510.828

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.在△ABC中,A,B,C所对的边长分别为a,b,c,且满足$cosA=\frac{3}{5}$,$\overrightarrow{AB}•\overrightarrow{AC}=3$,则△ABC的面积为(  )
A.2B.$\frac{3}{2}$C.3D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知平面内三向量$\overrightarrow a$=(2,1),$\overrightarrow b$=(-1,3),$\overrightarrow c$=(-2,2)
(1)求满足$\overrightarrow a=m\overrightarrow b+n\overrightarrow c$的实数m,n;
(2)若 $(2\overrightarrow a+k\overrightarrow{c)}$∥$(\overrightarrow b+\overrightarrow{c)}$求实数k的值;
(3)若$(2\overrightarrow a+k\overrightarrow{c)}$⊥$(\overrightarrow b+\overrightarrow{c)}$求实数k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设实数x,y满足$\left\{\begin{array}{l}{x-2y+7≤0}\\{x+y-5≥0}\\{2x-y-4≥0}\end{array}\right.$,则z=x+2y的最值情况正确的是(  )
A.最小值为7,最大值为17B.最小值为9,最大值为17
C.最小值为17,无最大值D.最大值为17,无最小值

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设f(x)的定义域是R,则下列命题中不正确的是(  )
A.若f(x)是奇函数,则f(f(x))也是奇函数
B.若f(x)是周期函数,则f(f(x))也是周期函数
C.若f(x)是单调递减函数,则f(f(x))也是单调递减函数
D.若方程f(x)=x有实根,则方程f(f(x))=x也有实根

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,在四棱锥P-ABCD中,底面ABCD是边长为2的正方形,侧面PAD是正三角形,且平面PAD⊥平面ABCD,O为棱AD的中点.
(1)求证:PO⊥平面ABCD;
(2)求二面角A-PD-B的余弦值.

查看答案和解析>>

同步练习册答案