分析 比较由n=k变到n=k+1时,左边变化的项,即可得出结论.
解答 解:用数学归纳法证明等式1+$\frac{1}{2}$++…+$\frac{1}{{2}^{n}}$<f(n)”时,
当n=k时,左边=1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{{2}^{k}}$,
那么当n=k+1时,左边=1++$\frac{1}{2}\frac{1}{3}$+…+$\frac{1}{{2}^{k+1}}$,
∴由n=k递推到n=k+1时不等式左边增加了共2k+1-2k=2k项,
故答案为:2k.
点评 本题考查数学归纳法,考查观察、推理与运算能力,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | B. | C. | D. |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $(\frac{1}{2},1]$ | B. | (-1,1] | C. | $(-1,\frac{1}{2}]$ | D. | ∅ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com