精英家教网 > 高中数学 > 题目详情
11.已知点A(2,1),点P的坐标值x,y满足$\left\{\begin{array}{l}{2x-y≤0}\\{x+y≤3}\\{x≥0}\end{array}\right.$,若O为坐标原点,则$\overrightarrow{OA}•\overrightarrow{OP}$的最大值是(  )
A.$\frac{{4\sqrt{5}}}{5}$B.$-\frac{{4\sqrt{5}}}{5}$C.4D.-4

分析 画出满足约束条件的平面区域Ω,然后利用角点法求出满足条件使Z=y+2x的值取得最值的点B的坐标,结合平面向量的数量积运算公式,即可得到结论.

解答 解:满足约束条件$\left\{\begin{array}{l}{2x-y≤0}\\{x+y≤3}\\{x≥0}\end{array}\right.$,的平面区域Ω如下图所示:

由图可知,当x=2,y=1时,
故 $\overrightarrow{OA}$=( 2,1)
设 $\overrightarrow{OP}$=(x,y)
则 $\overrightarrow{OP}$•$\overrightarrow{OA}$=2x+y,
由$\left\{\begin{array}{l}{2x-y=0}\\{x+y=3}\end{array}\right.$解得B(1,2)
则当P与B(1,2)重合时,$\overrightarrow{OP}$•$\overrightarrow{OA}$取最大值4;
故选:C.

点评 本题考查的知识点是简单线性规划,及平面向量的数量积的运算,其中根据约束条件画出可行域,进而根据角点法求出最优解是解答本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知$\overrightarrow{a}$=(3,-1),$\overrightarrow{b}$=(1,-2),求$\overrightarrow{a}$$•\overrightarrow{b}$,|$\overrightarrow{a}$|,|$\overrightarrow{b}$|,<$\overrightarrow{a}$,$\overrightarrow{b}$>

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若实数x,y满足$\left\{\begin{array}{l}{x-y+1≥0}\\{x+y≥0}\\{y-3x+1≥0}\end{array}\right.$,则z=x+2y的最小值是(  )
A.-3B.$\frac{3}{2}$C.-$\frac{1}{4}$D.-$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.集合A={x|x2-3x-10≤0},集合B={x|m+2≤x≤2m-1}.
(Ι) 若B⊆A,求实数m的取值范围;
(ΙΙ) 当x∈R时,没有元素x使x∈A与x∈B同时成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.对具有线性相关关系的变量x,y有一组观测数据(xi,yi)(i=1,2,…,8),其回归直线方程是$\hat y=\frac{1}{2}x+a$且x1+x2+…+x8=2,y1+y2+…+y8=5,则实数a是(  )
A.$\frac{1}{2}$B.$\frac{1}{4}$C.$\frac{1}{8}$D.$\frac{1}{16}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在△ABC中,角A,B,C所对的边分别为a,b,c,若csinA=$\sqrt{2}bsinC,c=5,B={45°}$.
(Ⅰ)求b的值;
(Ⅱ)求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若复平面上的点A、B分别表示复数1和i,线段AB的中点所对应的复数为z,则|z|=$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知f(x)=x2+2f′(1)x,则${∫}_{0}^{1}$($\sqrt{1-{x}^{2}}$+f(x))dx=(  )
A.$\frac{2}{3}$+$\frac{π}{2}$B.-$\frac{2}{3}$+$\frac{π}{2}$C.$\frac{5}{3}$+$\frac{π}{4}$D.-$\frac{5}{3}$+$\frac{π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.在等比数列{an}中,若an>an+1,且a7•a14=6,a4+a17=5,则$\frac{a_5}{{{a_{18}}}}$=(  )
A.$\frac{3}{2}$B.$\frac{2}{3}$C.$\frac{1}{6}$D.6

查看答案和解析>>

同步练习册答案