精英家教网 > 高中数学 > 题目详情
2.若复平面上的点A、B分别表示复数1和i,线段AB的中点所对应的复数为z,则|z|=$\frac{\sqrt{2}}{2}$.

分析 根据复数1和i在复平面内对应点A、B的坐标,求出线段AB的中点对应的复数z,再计算|z|的值.

解答 解:复数1和i在复平面内对应的点分别为A(1,0),B(0,1),
则线段AB的中点C($\frac{1}{2}$,$\frac{1}{2}$)对应的复数为z=$\frac{1}{2}$+$\frac{1}{2}$i,
则|z|=$\sqrt{{(\frac{1}{2})}^{2}{+(\frac{1}{2})}^{2}}$=$\frac{\sqrt{2}}{2}$.
故答案为:$\frac{\sqrt{2}}{2}$.

点评 本题考查了复平面的概念与复数模长的计算问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.已知复数z,满足z(1+3i)=10i,则z的虚部为(  )
A.1B.iC.-1D.-i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若复数$z=\frac{m+2i}{1+i}$(i为虚数单位,m∈R)的实部为-1,则m=(  )
A.0B.1C.-4D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知点A(2,1),点P的坐标值x,y满足$\left\{\begin{array}{l}{2x-y≤0}\\{x+y≤3}\\{x≥0}\end{array}\right.$,若O为坐标原点,则$\overrightarrow{OA}•\overrightarrow{OP}$的最大值是(  )
A.$\frac{{4\sqrt{5}}}{5}$B.$-\frac{{4\sqrt{5}}}{5}$C.4D.-4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知圆C圆心是直线x-y+1=0与x轴的交点,且圆C与直线x+y+3=0相切,则圆C的方程是(  )
A.(x+1)2+y2=2B.(x-1)2+y2=2C.(x+1)2+y2=8D.(x-1)2+y2=8

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.过抛物线y=4x2的焦点作直线交抛物线于A(x1,y1),B(x2,y2)两点,若y1+y2=5,则线段AB的长为$\frac{41}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.一个正方体截去两个角后所得的几何体的主视图,左视图如图所示,则其俯视图为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=$\sqrt{a{x}^{2}+bx+5}$的定义域为{x|-1≤x≤5},求a+b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若变量x,y满足约束条件$\left\{\begin{array}{l}{x+y-2≥0}\\{x-2y+6≥0}\\{x≤2}\end{array}\right.$,则z=(x-1)2+y2的最大值为(  )
A.4B.$\sqrt{17}$C.17D.16

查看答案和解析>>

同步练习册答案