精英家教网 > 高中数学 > 题目详情
11.已知函数f(x)=$\sqrt{a{x}^{2}+bx+5}$的定义域为{x|-1≤x≤5},求a+b的值.

分析 根据函数f(x)的定义域知不等式ax2+bx+5≥0的解集,
再利用根与系数的关系求出a、b的值.

解答 解:函数f(x)=$\sqrt{a{x}^{2}+bx+5}$的定义域为{x|-1≤x≤5},
∴ax2+bx+5≥0的解集为{x|-1≤x≤5},
∴一元二次方程ax2+bx+5≥0的实数根为-1和5,
∴-1+5=-$\frac{b}{a}$,且-1×5=$\frac{5}{a}$;
解得a=-1且b=4,
∴a+b=3.

点评 本题考查了函数的定义域与不等式解集的应用问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.若实数x,y满足$\left\{\begin{array}{l}{x-y+1≥0}\\{x+y≥0}\\{y-3x+1≥0}\end{array}\right.$,则z=x+2y的最小值是(  )
A.-3B.$\frac{3}{2}$C.-$\frac{1}{4}$D.-$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若复平面上的点A、B分别表示复数1和i,线段AB的中点所对应的复数为z,则|z|=$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知f(x)=x2+2f′(1)x,则${∫}_{0}^{1}$($\sqrt{1-{x}^{2}}$+f(x))dx=(  )
A.$\frac{2}{3}$+$\frac{π}{2}$B.-$\frac{2}{3}$+$\frac{π}{2}$C.$\frac{5}{3}$+$\frac{π}{4}$D.-$\frac{5}{3}$+$\frac{π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知单位向量$\overrightarrow{a}$,$\overrightarrow{b}$,且$\overrightarrow{a}$•$\overrightarrow{b}$=0,若t∈[0,1],则|t($\overrightarrow{b}$-$\overrightarrow{a}$)+$\overrightarrow{a}$|+|$\frac{5}{12}$$\overrightarrow{b}$+(1-t)($\overrightarrow{a}$-$\overrightarrow{b}$)|的最小值为(  )
A.$\frac{{\sqrt{193}}}{12}$B.$\frac{13}{12}$C.$\sqrt{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.在△ABC中,若a=2,cosA=$\frac{1}{3}$,则cos($\frac{π}{2}$-A)=$\frac{2\sqrt{2}}{3}$,△ABC面积的最大值为$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.执行如图所示的算法框图,如果输出的函数值在区间[$\frac{1}{2}$,2)内,则输入的实数x的取值范围是[-1,1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.在等比数列{an}中,若an>an+1,且a7•a14=6,a4+a17=5,则$\frac{a_5}{{{a_{18}}}}$=(  )
A.$\frac{3}{2}$B.$\frac{2}{3}$C.$\frac{1}{6}$D.6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知圆C经过点A(1,3),B(2,2),并且直线m:3x-2y=0平分圆C.
(1)求圆C的方程;
(2)若直线l:y=kx+2与圆C交于M,N两点,是否存在直线l,使得$\overrightarrow{OM}$•$\overrightarrow{ON}$=6(O为坐标原点),若存在,求出k的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案