精英家教网 > 高中数学 > 题目详情
6.对具有线性相关关系的变量x,y有一组观测数据(xi,yi)(i=1,2,…,8),其回归直线方程是$\hat y=\frac{1}{2}x+a$且x1+x2+…+x8=2,y1+y2+…+y8=5,则实数a是(  )
A.$\frac{1}{2}$B.$\frac{1}{4}$C.$\frac{1}{8}$D.$\frac{1}{16}$

分析 根据题意求出$\overline{x}$、$\overline{y}$,由回归直线方程过样本中心点求出a的值.

解答 解:根据题意知,x1+x2+…+x8=2,y1+y2+…+y8=5,
∴$\overline{x}$=$\frac{1}{8}$×2=$\frac{1}{4}$,
$\overline{y}$=$\frac{1}{8}$×5=$\frac{5}{8}$,
∴回归直线方程$\hat y=\frac{1}{2}x+a$过样本中心点($\frac{1}{4}$,$\frac{5}{8}$),
∴a=$\frac{5}{8}$-$\frac{1}{2}$×$\frac{1}{4}$=$\frac{1}{2}$,
即实数a=$\frac{1}{2}$.
故选:A.

点评 本题考查了线性回归方程过样本中心点的应用问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.若关于x的方程$\frac{lnx}{x}$-a=0(e为自然对数的底数)有两个实数根,则实数a的取值范围是(-∞,$\frac{1}{e}$].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.z1=-3-4i,z2=(n2-3m-1)+(n2-m-6)i,且z1=z2,则实数m=2,n=±2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若复数$z=\frac{m+2i}{1+i}$(i为虚数单位,m∈R)的实部为-1,则m=(  )
A.0B.1C.-4D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知a=3${\;}^{\frac{1}{3}}$,b=log${\;}_{\frac{1}{3}}$$\frac{1}{2}$,c=log${\;}_{\frac{1}{2}}$3,则(  )
A.a>b>cB.b>c>aC.c>b>aD.b>a>c

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知点A(2,1),点P的坐标值x,y满足$\left\{\begin{array}{l}{2x-y≤0}\\{x+y≤3}\\{x≥0}\end{array}\right.$,若O为坐标原点,则$\overrightarrow{OA}•\overrightarrow{OP}$的最大值是(  )
A.$\frac{{4\sqrt{5}}}{5}$B.$-\frac{{4\sqrt{5}}}{5}$C.4D.-4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知圆C圆心是直线x-y+1=0与x轴的交点,且圆C与直线x+y+3=0相切,则圆C的方程是(  )
A.(x+1)2+y2=2B.(x-1)2+y2=2C.(x+1)2+y2=8D.(x-1)2+y2=8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.一个正方体截去两个角后所得的几何体的主视图,左视图如图所示,则其俯视图为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.下列四个函数中,既是定义域上的奇函数又在区间(0,1)内单调递增的是(  )
A.y=$\sqrt{x}$B.y=xsinxC.y=lg$\frac{1-x}{1+x}$D.y=ex-e-x

查看答案和解析>>

同步练习册答案