精英家教网 > 高中数学 > 题目详情
1.已知a=3${\;}^{\frac{1}{3}}$,b=log${\;}_{\frac{1}{3}}$$\frac{1}{2}$,c=log${\;}_{\frac{1}{2}}$3,则(  )
A.a>b>cB.b>c>aC.c>b>aD.b>a>c

分析 利用指数函数与对数函数的单调性即可得出.

解答 解:∵a=3${\;}^{\frac{1}{3}}$>1,b=log${\;}_{\frac{1}{3}}$$\frac{1}{2}$=log32∈(0,1),c=log${\;}_{\frac{1}{2}}$3<0,
则a>b>c.
故选:A.

点评 本题考查了指数函数与对数函数的单调性,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.设α为第二象限角,P(x,4)为其终边上的一点,且$sinα=\frac{4}{5}$,则tan2α=$\frac{24}{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.sin22α+cos22α=(  )
A.1B.cos2αC.2D.sin2α

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.要得到函数y=sinx的图象,只需将函数y=sin(2x+$\frac{π}{4}$)的图象上所有点的(  )
A.横坐标缩短到原来的$\frac{1}{2}$倍(纵坐标不变),再向左平行移动$\frac{π}{8}$个单位长度
B.横坐标伸长到原来的2倍(纵坐标不变),再向左平行移动$\frac{π}{4}$个单位长度
C.横坐标缩短到原来的$\frac{1}{2}$倍(纵坐标不变),再向右平行移动$\frac{π}{4}$个单位长度
D.横坐标伸长到原来的2倍(纵坐标不变),再向右平行移动$\frac{π}{4}$个单位长度

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.在△ABC中,A,B,C所对的边长分别为a,b,c,且$\frac{sinA}{cosB}=2sinC$,则△ABC的形状为(  )
A.等边三角形B.直角三角形C.等腰三角形D.等腰直角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.对具有线性相关关系的变量x,y有一组观测数据(xi,yi)(i=1,2,…,8),其回归直线方程是$\hat y=\frac{1}{2}x+a$且x1+x2+…+x8=2,y1+y2+…+y8=5,则实数a是(  )
A.$\frac{1}{2}$B.$\frac{1}{4}$C.$\frac{1}{8}$D.$\frac{1}{16}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=ax+lnx,x∈[1,e],
(1)若$\lim_{t→0}\frac{{f({1-2t})-f(1)}}{t}=-4$,求f(x)的最大值;
(2)若f(x)≤0恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.在Rt△ABC中,∠C=$\frac{π}{2}$,AC=1,BC=$\sqrt{3}$,D是AB边上的动点,设BD=x,把△BDC沿DC翻折为△B′DC,若存在某个位置,使得异面直线B′C与AD所成的角为$\frac{π}{3}$,则实数x的取值范围是(  )
A.0<x<$\frac{3-\sqrt{3}}{2}$B.$\frac{3-\sqrt{3}}{2}$<x<2C.0<x<$\frac{2-\sqrt{3}}{2}$D.$\frac{2-\sqrt{2}}{2}$<x<2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.复数z=$\frac{1-\sqrt{3}i}{\sqrt{3}+i}$,复数$\overline{z}$是z的共轭复数,则z$•\overline{z}$=(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.1D.4

查看答案和解析>>

同步练习册答案