分析 由题意利用任意角的三角函数的定义求得x的值,可得tanα的值,再利用二倍角的正切公式求得tan2α的值.
解答 解:∵α为第二象限角,P(x,4)为其终边上的一点,∴x<0,
再根据 $sinα=\frac{4}{5}$=$\frac{4}{\sqrt{{x}^{2}+16}}$,∴x=-3,∴tanα=$\frac{4}{x}$=-$\frac{4}{3}$,
则tan2α=$\frac{2tanα}{1{-tan}^{2}α}$=$\frac{-\frac{8}{3}}{1-\frac{16}{9}}$=$\frac{24}{7}$,
故答案为:$\frac{24}{7}$.
点评 本题主要考查任意角的三角函数的定义,二倍角的正切公式的应用,属于基础题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {x|x>4或x<0} | B. | {x|-2<x<2} | C. | {x|x>2或x<-2} | D. | {x|0<x<4} |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a>b>c | B. | b>c>a | C. | c>b>a | D. | b>a>c |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com