精英家教网 > 高中数学 > 题目详情
11.设α为第二象限角,P(x,4)为其终边上的一点,且$sinα=\frac{4}{5}$,则tan2α=$\frac{24}{7}$.

分析 由题意利用任意角的三角函数的定义求得x的值,可得tanα的值,再利用二倍角的正切公式求得tan2α的值.

解答 解:∵α为第二象限角,P(x,4)为其终边上的一点,∴x<0,
再根据 $sinα=\frac{4}{5}$=$\frac{4}{\sqrt{{x}^{2}+16}}$,∴x=-3,∴tanα=$\frac{4}{x}$=-$\frac{4}{3}$,
则tan2α=$\frac{2tanα}{1{-tan}^{2}α}$=$\frac{-\frac{8}{3}}{1-\frac{16}{9}}$=$\frac{24}{7}$,
故答案为:$\frac{24}{7}$.

点评 本题主要考查任意角的三角函数的定义,二倍角的正切公式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.已知函数f(x)是定义在R上的奇函数,当x≥0时,f(x)=|x-1|+|x-2|-3,若对任意实数x,恒有f(x-a)≤f(x),则非零实数a的取值范围为[6,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数$f(x)=\sqrt{3}sinxcosx+co{s^2}x+1$.
(1)求f(x)的最小正周期及单调递减区间;
(2)在△ABC中,a,b,c分别是角A,B,C的对边,若f(C)=2,a+b=4,且△ABC的面积为$\frac{{\sqrt{3}}}{3}$,求△ABC外接圆的半径.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知p:指数函数f(x)=(2a-6)x在R上是单调减函数;q:关于x的方程x2-3ax+2a2+1=0的两根均大于3,若p或q为真,p且q为假,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若函数f(x)=(x-2)(ax+b)为偶函数,且在(0,+∞)上单调递增,则f(2-x)>0的解集为(  )
A.{x|x>4或x<0}B.{x|-2<x<2}C.{x|x>2或x<-2}D.{x|0<x<4}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若关于x的方程$\frac{lnx}{x}$-a=0(e为自然对数的底数)有两个实数根,则实数a的取值范围是(-∞,$\frac{1}{e}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知二次函数f(x)=ax2+4x+c的最小值为-1,且对任意x都有f(-2+x)=f(-x)
(1)求函数f(x)的解析式;
(2)设g(x)=f(-x)-λf(x)+1,λ<1,若g(x)在[-2,2]上是减函数,求实数λ的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.我国古代数学名著《九章算术》的论割圆术中有:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆合体而无所失矣”它体现了一种无限与有限转化过程,比如在表达式1$+\frac{1}{1+\frac{1}{1+…}}$中“…”即代表无限次重复,但原式却是个定值,它可以通过方程1$+\frac{1}{x}$=x(x>0)求得x=$\frac{1+\sqrt{5}}{2}$,类似上述过程,则 $\sqrt{3+2\sqrt{3+2\sqrt{…}}}$=3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知a=3${\;}^{\frac{1}{3}}$,b=log${\;}_{\frac{1}{3}}$$\frac{1}{2}$,c=log${\;}_{\frac{1}{2}}$3,则(  )
A.a>b>cB.b>c>aC.c>b>aD.b>a>c

查看答案和解析>>

同步练习册答案