精英家教网 > 高中数学 > 题目详情
“渐升数”是指除最高位数字外,其余每一个数字比其左边的数字大的正整数(如13456和35678都是五位的“渐升数”).
(Ⅰ)共有
 
个五位“渐升数”(用数字作答);
(Ⅱ)如果把所有的五位“渐升数”按照从小到大的顺序排列,则第110个五位“渐升数”是
 
考点:计数原理的应用
专题:排列组合
分析:(Ⅰ)分析可得“渐升数”中不能有0,则可以在其他9个数字中任取5个,按从小到大的顺序排成一列,即可以组成一个“渐升数”,即每种取法对应一个“渐升数”,由组合数公式计算C95即可得答案,
(Ⅱ),先计算1和2,3在首位的“渐升数”的个数,可得第100个“渐升数”的首位是3,进而计算3在首位,第二位是4,第三位是5的“渐升数”的个数,即可分析可得第1111个“渐升数”是首位是3、第二位是4,第三位是5的“渐升数”中最大的一个,即34589,继而求出第110个
解答: 解:(Ⅰ)根据题意,“渐升数”中不能有0,
则在其他9个数字中任取5个,每种取法对应一个“渐升数”,
则共有“渐升数”C95=126个,
(Ⅱ)对于这些“渐升数”,1在首位的有C84=70个,2在首位的有C74=35个,3在首位的有C64=15个,
对于3在首位的“渐升数”中,第二位是4的有C53=10个,第三位是5的有C42=6,
∵70+35+10+6=111,
所以则第111个“渐升数”是首位是3、第二位是4,第三位是5的“渐升数”中最大的一个,即34589
则第110个“渐升数”即34579;
故答案为126,34579;
点评:本题考查排列、组合的应用,关键是理解“渐升数”的含义,其次要注意0不能在首位,即“渐升数”中不能有0.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

一个几何体的三视图如图所示,则该几何体的表面积和体积分别是(  )
A、24+6
2
和40
B、24+6
2
和72
C、64+6
2
和40
D、50+6
2
和72

查看答案和解析>>

科目:高中数学 来源: 题型:

如图①,直线l交x轴、y轴分别于A、B两点,A(a,0)B(0,b),且(a-b)2+|b-4|=0

(1)求A、B两点坐标.
(2)C为线段AB上一点,C点的横坐标是3,P是y轴正半轴上一点,且满足∠OCP=45°,求P点坐标.
(3)在(2)的条件下,过B作BD⊥OC,交OC、OA分别于F、D两点,E为OA上一点,且∠CEA=∠BDO,试判断线段OD与AE的数量关系,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

若a=2
2
cos50°(
3
-tan190°)sin(-
21π
4
),则f(x)=loga
x
4
loga
x
2
1
4
≤x≤4)的值域为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F是抛物线y2=4x的焦点,M是这条抛物线上的一个动点,P(4,1)是一个定点,则|MP|+|MF|的最小值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-
1
2x-1
,(a∈R)
(1)求f(x)的定义域;
(2)若f(x)为奇函数,求a的值;
(3)考察f(x)在(0,+∞)上单调性的情况,并用单调性定义证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

在三棱台ABC-A1B1C1中,从AB,BC,CA所在直线中任取一条,则这条直线与A1B1所在直线成异面直线的概率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x+2)=
x-1
(x≥0)
lg(-x)(x<0)
,则f(-100)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)(x∈R)满足f(x+2)=2f(x)+x,且当0≤x<2时,f(x)=[x]([x]表示不超过x的最大整数),则f(5.5)=(  )
A、8.5B、10.5
C、12.5D、14.5

查看答案和解析>>

同步练习册答案