精英家教网 > 高中数学 > 题目详情

已知函数f(x)=ax3+bx2+x为奇函数,且f(1)-f(-1)=4.
(1)求实数a,b的值;
(2)若对于任意的x∈[0,2],都有f(x)<c2-9c恒成立,求实数c的取值范围.

解:(1)∵f(x)=ax3+bx2+x为奇函数,
∴f(-x)=-f(x)对任意x∈R恒成立
即:-ax3+bx2-x=-ax3-bx2-x?2bx2=0任意x∈R恒成立
∴b=0,可得f(x)=ax3+x
∵f(1)-f(-1)=4
∴a+1-(-a-1)=4?a=1
综上所述,得a=1,b=0
(2)由(1)得f(x)=x3+x,
求导数得f′(x)=3x2+1>0对任意x∈R恒成立
∴f(x)是R上的增函数.当x∈[0,2]时,f(x)的最大值为f(2)=10
∵对于任意的x∈[0,2],都有f(x)<c2-9c恒成立
∴10<c2-9c?c2-9c-10>0?c<-1或c>10
综上所述,得实数c的取值范围为c∈(-∞,-1)∪(10,+∞).
分析:(1)根据奇函数的定义,采用比较系数的方法可得b=0,代入原函数再结合等式f(1)-f(-1)=4,可得实数a的值;
(2)由(1)得f(x)=x3+x,利用导数工具得到函数是R上的增函数,从而在区间[0,2]上的最大值为f(2)=10,再结合f(x)<c2-9c恒成立,说明f(x)的最大值也小于c2-9c,建立不等关系可解得实数c的取值范围.
点评:本题以三次多项式函数为例,考查了函数的单调性、奇偶性及其综合等知识点,属于中档题.本题中处理不等式恒成立问题时,利用了函数的最值,是解决此类问题的最常用方法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)当a∈[-2,
1
4
)
时,求f(x)的最大值;
(2)设g(x)=[f(x)-lnx]•x2,k是g(x)图象上不同两点的连线的斜率,否存在实数a,使得k≤1恒成立?若存在,求a的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•海淀区二模)已知函数f(x)=a-2x的图象过原点,则不等式f(x)>
34
的解集为
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a|x|的图象经过点(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a•2x+b•3x,其中常数a,b满足a•b≠0
(1)若a•b>0,判断函数f(x)的单调性;
(2)若a=-3b,求f(x+1)>f(x)时的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-2|x|+1(a≠0),定义函数F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 给出下列命题:①F(x)=|f(x)|; ②函数F(x)是奇函数;③当a<0时,若mn<0,m+n>0,总有F(m)+F(n)<0成立,其中所有正确命题的序号是
 

查看答案和解析>>

同步练习册答案