精英家教网 > 高中数学 > 题目详情
10.设向量$\overrightarrow a,\overrightarrow b$满足$|{\overrightarrow a}|=|{\overrightarrow b}$|=1,$\overrightarrow a•\overrightarrow b=m$,则$|{\overrightarrow a+t\overrightarrow b}|({t∈R})$的最小值为(  )
A.2B.$\sqrt{1+{m^2}}$C.1D.$\sqrt{1-{m^2}}$

分析 根据向量的数量积公式和向向量的模的以及二次函数的性质即可求出.

解答 解:∵$|{\overrightarrow a}|=|{\overrightarrow b}$|=1,$\overrightarrow a•\overrightarrow b=m$,
∴|$\overrightarrow{a}$+t$\overrightarrow{b}$|2=|$\overrightarrow{a}$|2+2t$\overrightarrow{a}$•$\overrightarrow{b}$+t2|$\overrightarrow{b}$|2=1+2tm+t2=(t+m)2-m2+1,
∴|$\overrightarrow{a}$+t$\overrightarrow{b}$|≥$\sqrt{1-{m}^{2}}$
故选:D.

点评 本题主要考查平面向量的模长公式,两个向量的数量积的定义,二次函数的性质,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源:2016-2017学年河北正定中学高二上月考一数学(理)试卷(解析版) 题型:解答题

某公司2016年前三个月的利润(单位:百万元)如下:

(1)求利润关于月份的线性回归方程;

(2)试用(1)中求得的回归方程预测4月和5月的利润;

(3)试用(1)中求得的回归方程预测该公司2016年从几月份开始利润超过1000万?

相关公式:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设F1,F2分别是椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$(a>b>0)的左右焦点,M是C上一点且MF2与x轴垂直,直线MF1与C的另一个交点为N.
(1)若直线MN的斜率为$\frac{3}{4}$,求C的离心率;
(2)若直线MN在y轴上的截距为2,且|MN|=5|F1N|,求椭圆标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,四棱锥P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,PA=AB=1,BC=2,E为PD的中点

(1)求异面直线PA与CE所成角的大小;
(2)求三棱锥A-CDE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,已知平面ABC⊥平面ACDE,且△ABC为等腰直角三角形,AC=BC=4,等腰梯形ACDE中,AC∥DE且AE=DE=2.
(Ⅰ)求证:平面ABE⊥平面BCE;
(Ⅱ)求二面角C-BE-D的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,在四棱锥P-ABCD中,E为AD上一点,面PAD⊥面ABCD,四边形
BCDE为矩形∠PAD=60°,PB=2$\sqrt{3}$,PA=ED=2AE=2.
(Ⅰ)求证:CB⊥面PEB
(Ⅱ) 已知$\overrightarrow{PF}=λ\overrightarrow{PC}({λ∈R})$,且PA∥面BEF,求λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知椭圆C1,抛物线C2的焦点均在x轴上,从两条曲线上各取两个点,将其坐标混合记录于如表中:
x-22$\sqrt{6}$9
y$\sqrt{2}$-$\sqrt{2}$-13
(1)求椭圆C1和抛物线C2的标准方程.
(2)过椭圆C1右焦点F的直线l与此椭圆相交于A,B两点,若点P为直线x=4上任意一点,
①试证:直线PA,PF,PB的斜率成等差数列.
②若点P在X轴上,设$\overrightarrow{FA}$=λ$\overrightarrow{FB}$,λ∈[-2,-1],求|$\overrightarrow{PA}$+$\overrightarrow{PB}$|取最大值时的直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.定积分${∫}_{0}^{π}$|sinx-cosx|dx的值是(  )
A.2+$\sqrt{2}$B.2-$\sqrt{2}$C.2D.2$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设不等式x2-x-2≤0的解集为M,若对任意x∈M,不等式:2x+1-4x-1≤4-ln($\frac{s-1}{s+1}$)均成立,则s的取值范围是:s>1.

查看答案和解析>>

同步练习册答案