精英家教网 > 高中数学 > 题目详情
17.设不等式x2-x-2≤0的解集为M,若对任意x∈M,不等式:2x+1-4x-1≤4-ln($\frac{s-1}{s+1}$)均成立,则s的取值范围是:s>1.

分析 求出集合M,构造函数y=2x+1-4x-1,通过函数的最值,列出不等式求解即可.

解答 解:不等式x2-x-2≤0的解集为M=[-1,2],令y=2x+1-4x-1=2•2x-$\frac{1}{4}$•(2x2
令t=2x,可得y=2t-$\frac{1}{4}{t}^{2}$,t∈[$\frac{1}{2}$,4],函数的对称轴为:t=4,开口向下,t=4即x=2时,y取得最小值,4.对任意x∈M,不等式:2x+1-4x-1≤4-ln($\frac{s-1}{s+1}$)均成立,可得4≤4-ln($\frac{s-1}{s+1}$),
即ln($\frac{s-1}{s+1}$)≤0,解得s>1.
故答案为:s>1.

点评 本题考查函数恒成立以及二次函数的简单性质的应用,考查转化思想以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.设向量$\overrightarrow a,\overrightarrow b$满足$|{\overrightarrow a}|=|{\overrightarrow b}$|=1,$\overrightarrow a•\overrightarrow b=m$,则$|{\overrightarrow a+t\overrightarrow b}|({t∈R})$的最小值为(  )
A.2B.$\sqrt{1+{m^2}}$C.1D.$\sqrt{1-{m^2}}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.用三种颜色给立方体的八个顶点染色,其中至少有一种颜色恰好染四个顶点.则任一条棱的两个端点都不同色的概率是$\frac{1}{35}$.

查看答案和解析>>

科目:高中数学 来源:2016-2017学年安徽六安一中高一上国庆作业二数学试卷(解析版) 题型:解答题

.

(1)求

(2)设,且中有且仅有2个元素属于,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图(1)所示,以线段BD为直径的圆经过A,C两点,且AB=BC=1,BD=2,延长DA,CB交于点P,将△PAB沿AB折起,使点P至点P′位置得到如图2所示的空间图形,其中点P′在平面ABCD内的射影恰为线段AD的中点Q,若线段P′B,P′C的中点分别为E,F.
(1)证明:A,D,E,F四点不共面;
(2)求几何体P′ADE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.正方形ABCD沿对角线BD将△ABD折起,使A点至P点,连PC.已知二面角P-BD-C的大小为θ,则下列结论错误的是(  )
A.若θ=90°,则直线PB与平面BCD所成角大小为45°
B.若直线PB与平面BCD所成角大小为45°,则θ=90°
C.若θ=60°,则直线BD与PC所成角大小为90°
D.若直线BD与PC所成角大小为90°,则θ=60°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.六安市用“10.0分制”调查市民的幸福度.现从调查人群中随机抽取16名市民,记录了他们的幸福度分数(以小数点前的一位数字为茎,小数点后的一位数字为叶)

(1)若幸福度不低于9,则称该人的幸福度为“极幸福”.求从这16人中随机选取3人,至少有1人是“极幸福”的概率;
(2)以这16人的样本数据来估计整个社区的总体数据,若从该社区(人数很多)任选3人,记ξ表示抽到“极幸福”的人数,求ξ的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在四棱锥P-ABCD中,底面ABCD是边长为10的正方形,若PD⊥平面ABCD,PD=AB.
(I)求证:AC⊥PB.
(Ⅱ)求二面角A-PB-D的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图所示,在直三棱柱ABC-A1B1C1中,已知CA⊥CB,CA=CB=1,AA1=2,且棱AA1和A1B1的中点分别是M,N.
(1)求BM的长;
(2)求直线A1B和直线B1C夹角的余弦值;
(3)求证:直线A1B⊥直线C1N.

查看答案和解析>>

同步练习册答案