精英家教网 > 高中数学 > 题目详情
20.计算:(1)0.027${\;}^{-\frac{1}{3}}$-(-$\frac{1}{7}$)-2+256${\;}^{\frac{3}{4}}$-3-1+($\sqrt{2}$-1)0
(2)${log_{2.5}}6.25+lg0.01+ln\sqrt{e}-{2^{1+{{log}_2}3}}$
(3)$lg{5}^{2}+\frac{2}{3}lg8+lg5•lg20+{(lg2)}^{2}$.

分析 (1)利用指数的运算法则即可得出.
(2)(3)利用对数的运算法则即可得出.

解答 解:(1)原式=$0.{3}^{3×(-\frac{1}{3})}$-7-1×(-2)+${4}^{4×\frac{3}{4}}$-$\frac{1}{3}$+1=$\frac{10}{3}$-49+64-$\frac{1}{3}$+1=19;
(2)原式=2-2+$\frac{1}{2}$-2×3=$-\frac{11}{2}$;
(3)原式=2(lg5+lg2)+lg5(lg2+1)+(lg2)2
=2+lg2(lg5+lg2)+lg5
=2+lg2+lg5
=3.

点评 本题考查了指数与对数的运算法则,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.设集合A={0,1,2},B={x|(x+1)(x-2)<0},则A∩B的元素个数为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若集合A={x|(x+4)(x+1)<0},集合B={x|x<-2},则A∩(∁RB)等于(  )
A.(-2,-1)B.[-2,4)C.[-2,-1)D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.下列命题是真命题的有④⑤
①平面内与两个定点F1,F2的距离之和等于常数的点的轨迹是椭圆;
②如果向量$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$,$\overrightarrow{{e}_{3}}$是三个不共线的向量,$\overrightarrow{a}$是空间任一向量,那么存在唯一一组实数λ1,λ2,λ3使得$\overrightarrow{a}$=λ1$\overrightarrow{{e}_{1}}$+λ2$\overrightarrow{{e}_{2}}$+λ3$\overrightarrow{{e}_{3}}$;
③方程y=$\sqrt{x}$与x=y2表示同一曲线;
④若命题p是命题q的充分非必要条件,则¬p是¬q的必要非充分条件;
⑤方程$\frac{{x}^{2}}{5-m}$+$\frac{{y}^{2}}{2-m}$=1表示双曲线的充要条件是2<m<5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.下列推断错误的个数是(  )
①命题“若x2-3x+2=0,则x=1”的逆否命题为“若x≠1,则x2-3x+2≠0”
②命题“若x2=1,则x=1”的否命题为:若“x2=1,则x≠1”
③“x<1”是“x2-3x+2>0”的充分不必要条件
④若p∧q为假命题,则p,q均为假命题.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知函数f(x)是定义域为R的偶函数,当x≥0时,$f(x)=\left\{\begin{array}{l}\frac{5}{16}{x^2},0≤x≤2\\{(\frac{1}{2})^x}+1,\;x>2\end{array}\right.$,若关于x的方程[f(x)]2+af(x)+b=0有且仅有6个不同的实数根,则实数a的取值范围是(-$\frac{5}{2}$,-$\frac{9}{4}$)∪(-$\frac{9}{4}$,-1).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.函数f(x)=$\frac{x-3}{x+3}$,g(x)=x+3,则f(x)•g(x)=x-3,(x∈(-∞,-3)∪(-3,+∞)).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.有下列命题:(1)若z是复数,则|z|2=z2;(2)任意两个复数不能比较大小;(3)b2-4ac>0时,一元二次方程ax2+bx+c=0(a,b,c∈C)有两个不等的实数根,其中所有错误命题的序号是(  )
A.(1)(2)B.(1)(3)C.(2)(3)D.(1)(2)(3)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.三棱锥S-ABC及其三视图中的正视图和侧视图如图所示,则该三棱锥S-ABC的外接球的表面积为(  )
A.32πB.$\frac{112π}{3}$C.$\frac{28π}{3}$D.$\frac{64}{3}$π

查看答案和解析>>

同步练习册答案