精英家教网 > 高中数学 > 题目详情
20.设集合A={0,1,2},B={x|(x+1)(x-2)<0},则A∩B的元素个数为(  )
A.0B.1C.2D.3

分析 根据题意直接得出A∩B={0,1},即有2个元素.

解答 解:因为B={x|(x+1)(x-2)<0}=(-1,2),且A={0,1,2},
所以,A∩B={0,1},
因此,A与B的交集中含有2个元素,
故选:C.

点评 本题主要考查了交集的运算和集合的表示,以及集合中元素个数的确定,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.定义:若存在实数x1∈[-2,-1],x2∈[a,32]使2${\;}^{-{x}_{1}}$=log2x2成立,则称a为指对实数,那么在a∈[-20,20]上成为指对实数的概率是$\frac{9}{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知向量$\overrightarrow{a}$=(sinx,mcosx),$\overrightarrow{b}$=(3,-1).
(1)若$\overrightarrow{a}$∥$\overrightarrow{b}$,且m=1,求2sin2x-3cos2x的值;
(2)若函数f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$的图象关于直线x=$\frac{2π}{3}$对称,求函数f(2x)在[$\frac{π}{8}$,$\frac{2π}{3}$]上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.若数列{an}是公差为2的等差数列,数列{bn}满足b1=1,b2=2且anbn+bn=nbn+1
(1)求数列{an}、{bn}的通项公式;
(2)设数列{cn}满足cn=$\frac{{a}_{n}+1}{{b}_{n+1}}$,数列{cn}的前n项和为Tn,则Tn<4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数f(x)=2sin($\frac{x+φ}{2}$)cos($\frac{x+φ}{2}$)(|φ|<$\frac{π}{2}$),且对任意的x∈R,f(x)≤f($\frac{π}{6}$),则(  )
A.f(x)=f(x+π)B.f(x)=f(x+$\frac{π}{2}$)C.f(x)=f($\frac{π}{3}$-x)D.f(x)=f($\frac{π}{6}$-x)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.双曲线的焦点到渐近线的距离等于半实轴长,则该双曲线的离心率等于(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=|x+1|+|2x-4|.
(Ⅰ)解关于x的不等式f(x)<9;
(Ⅱ)若直线y=m与函数y=f(x)的图象围成一个三角形,求实数m的取值范围,并求围成的三角形面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知球O的半径为13,其球面上有三点A、B、C,若AB=12$\sqrt{3}$,AC=BC=12,则四面体OABC的体积是60$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.计算:(1)0.027${\;}^{-\frac{1}{3}}$-(-$\frac{1}{7}$)-2+256${\;}^{\frac{3}{4}}$-3-1+($\sqrt{2}$-1)0
(2)${log_{2.5}}6.25+lg0.01+ln\sqrt{e}-{2^{1+{{log}_2}3}}$
(3)$lg{5}^{2}+\frac{2}{3}lg8+lg5•lg20+{(lg2)}^{2}$.

查看答案和解析>>

同步练习册答案