精英家教网 > 高中数学 > 题目详情
8.若数列{an}是公差为2的等差数列,数列{bn}满足b1=1,b2=2且anbn+bn=nbn+1
(1)求数列{an}、{bn}的通项公式;
(2)设数列{cn}满足cn=$\frac{{a}_{n}+1}{{b}_{n+1}}$,数列{cn}的前n项和为Tn,则Tn<4.

分析 (1)b1=1,b2=2且anbn+bn=nbn+1.n=1时,a1+1=2,解得a1.利用等差数列的通项公式可得an.利用等比数列的通项公式可得bn
(2)cn=$\frac{{a}_{n}+1}{{b}_{n+1}}$=$\frac{2n}{{2}^{n}}$=$\frac{n}{{2}^{n-1}}$,利用“错位相减法”与等比数列的求和公式即可得出.

解答 解:(1)∵b1=1,b2=2且anbn+bn=nbn+1.∴n=1时,a1+1=2,解得a1=1.
∴an=1+2(n-1)=2n-1.
∴2nbn=nbn+1,即2bn=bn+1
∴数列{bn}是等比数列,公比为2.
∴bn=2n-1
(2)cn=$\frac{{a}_{n}+1}{{b}_{n+1}}$=$\frac{2n}{{2}^{n}}$=$\frac{n}{{2}^{n-1}}$,
数列{cn}的前n项和为Tn=1+$\frac{2}{2}$+$\frac{3}{{2}^{2}}$+…+$\frac{n}{{2}^{n-1}}$,
$\frac{1}{2}{T}_{n}$=$\frac{1}{2}+\frac{2}{{2}^{2}}$+…+$\frac{n-1}{{2}^{n-1}}$+$\frac{n}{{2}^{n}}$,
∴$\frac{1}{2}$Tn=$1+\frac{1}{2}+\frac{1}{{2}^{2}}$+…+$\frac{1}{{2}^{n-1}}$-$\frac{n}{{2}^{n}}$=$\frac{1-\frac{1}{{2}^{n}}}{1-\frac{1}{2}}$-$\frac{n}{{2}^{n}}$,
∴Tn=4-$\frac{2+n}{{2}^{n-1}}$<4.

点评 本题考查了“错位相减法”、等差数列与等比数列的通项公式与求和公式,考查了推理能力 与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.若(2x+1)n=a0+a1x+a2x2+…+anxn的展开式中的各项系数和为243,则a1+2a2+…+nan=(  )
A.405B.810C.243D.64

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.在Rt△ABC中,∠C=90°,$\overrightarrow{AB}=(1,x),\overrightarrow{AC}=(-1,2)$,则实数x=3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知集合A={x∈N|1<x<log2k},集合A中至少有2个元素,则(  )
A.k≥4B.k>4C.k≥8D.k>8

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知直线AB:x+y-6=0与抛物线y=x2及x轴正半轴围成的图形为Ω,若从Rt△AOB区域内任取一点M(x,y),则点M取自图形Ω的概率为$\frac{16}{27}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在△ABC中,角A,B,C所对的边分别为a,b,c,已知b2+c2=a2+bc
(1)求角A的大小
(2)若△ABC的三个顶点都在单位圆上,且b2+c2=4,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设集合A={0,1,2},B={x|(x+1)(x-2)<0},则A∩B的元素个数为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=sin(2x+$\frac{π}{3}$)+cos(2x+$\frac{π}{6}$)+msin2x (m∈R),f($\frac{π}{12}$)=2.
(Ⅰ)求 m 的值;
(Ⅱ)在△ABC 中,角 A,B,C 的对边分别为 a,b,c,若 b=2,f ($\frac{B}{2}$)=$\sqrt{3}$,△ABC 的面积是$\sqrt{3}$,求△ABC 的周长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.下列命题是真命题的有④⑤
①平面内与两个定点F1,F2的距离之和等于常数的点的轨迹是椭圆;
②如果向量$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$,$\overrightarrow{{e}_{3}}$是三个不共线的向量,$\overrightarrow{a}$是空间任一向量,那么存在唯一一组实数λ1,λ2,λ3使得$\overrightarrow{a}$=λ1$\overrightarrow{{e}_{1}}$+λ2$\overrightarrow{{e}_{2}}$+λ3$\overrightarrow{{e}_{3}}$;
③方程y=$\sqrt{x}$与x=y2表示同一曲线;
④若命题p是命题q的充分非必要条件,则¬p是¬q的必要非充分条件;
⑤方程$\frac{{x}^{2}}{5-m}$+$\frac{{y}^{2}}{2-m}$=1表示双曲线的充要条件是2<m<5.

查看答案和解析>>

同步练习册答案