精英家教网 > 高中数学 > 题目详情
5.公园中有一个月亮门,上边是半径为$\frac{\sqrt{17}}{2}$m的圆的劣弧,下边是长半轴等于2m,短半轴等于1m的半个椭圆,现要搬运一个横截面为矩形的货箱水平通过该月亮门.若矩形货箱的横截面的水平底边长为2m,则该货箱的高所允许的最大值为多少m.

分析 通过建立平面直角坐标系,可得EF即为所求最大值,利用勾股定理及两点间的距离公式计算即可.

解答 解:建立平面直角坐标系如图,椭圆方程为$\frac{{x}^{2}}{4}$+y2=1,
设A为劣弧所在圆的圆心,则OA=$\sqrt{A{{F}_{1}}^{2}-O{F}^{2}}$=$\sqrt{\frac{17}{4}-4}$=$\frac{1}{2}$,即A(0,-$\frac{1}{2}$),
设货箱的横截面为MNPQ,则MN=PQ=2,
则EF即为所求最大值,
此时M(-1,-$\frac{\sqrt{3}}{2}$),∴F(0,-$\frac{\sqrt{3}}{2}$),
∴AF=$\frac{\sqrt{3}}{2}$-$\frac{1}{2}$,
在Rt△AEP中,AE=$\sqrt{A{P}^{2}-E{P}^{2}}$=$\sqrt{\frac{17}{4}-1}$=$\frac{\sqrt{13}}{2}$,
∴EF=AE+AF=$\frac{\sqrt{13}}{2}$+$\frac{\sqrt{3}}{2}$-$\frac{1}{2}$,
故该货箱的高所允许的最大值为$\frac{\sqrt{13}}{2}$+$\frac{\sqrt{3}}{2}$-$\frac{1}{2}$m.

点评 本题是一道关于椭圆与圆的应用题,建系画出图形、找出最大值时的情形是解决本题的关键,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.“辽宁舰”,舷号16,是中国人民解放军海军第一艘可以搭载固定翼飞机的航空母舰,在“辽宁舰”的飞行甲板后部有四条拦阻索,降落的飞行员须捕捉钩挂上其中一条,则为“成功着陆”,舰载机白天挂住第一条拦阻索的概率为18%,挂住第二条、第三条拦阻索的概率为62%,捕捉钩未挂住拦阻索需拉起复飞的概率约为5%,现有一架歼-15战机白天着舰演练20次均成功,则其被第四条拦阻索挂住的次数约为(  )
A.5B.3C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.如图,在△ABC中,∠ABC和∠ACB的平分线相交于点O,过点O作EF∥BC交AB于E,交AC于F,过点O作OD⊥AC于D.下列四个结论:①∠BOC=90°+$\frac{1}{2}$∠A; ②EF=BE+CF;③设OD=m,AE+AF=n,则S△AEF=$\frac{1}{2}$mn; ④EF是△ABC的中位线.其中正确的结论是①②③.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.在极坐标中,若实数ρ,θ满足3ρcos2θ+2ρsin2θ=6cosθ,则ρ2的最大值为4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.数列{an}的前n项和为Sn,已知a1=1,an+1=$\frac{n+2}{n}$Sn,证明:
(1)数列{$\frac{{S}_{n}}{n}$}是等比数列;
(2)求Sn与an

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若x,y∈R,则“log2(xy+4x-2y)=3”是“x2-4x+y2+8y+20=0”成立的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设全集U=R,已知A={x|$\frac{2x+3}{x-2}$>0},B={x||x-1|<2},则(∁UA)∩B=(  )
A.(-$\frac{3}{2}$,-1)B.(-1,-2]C.(2,3]D.[2,3)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在△ABC中,已知CM是∠ACB的平分线,△AMC的外接圆交BC于点N.若2AB=AC,AM=$\sqrt{2}$,求BN的长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.如图:钝角三角形ABC的面积为18,最长边AB=12,BD平分∠ABC,点M、N分别是BD、BC上的动点,则CM+MN的最小值为3.

查看答案和解析>>

同步练习册答案