精英家教网 > 高中数学 > 题目详情
14.在△ABC中,已知CM是∠ACB的平分线,△AMC的外接圆交BC于点N.若2AB=AC,AM=$\sqrt{2}$,求BN的长.

分析 由角平分线的性质可得$\frac{AC}{BC}=\frac{AM}{BM}$,再由条件推出$\frac{AB}{BC}=\frac{1}{2}•\frac{AM}{BM}$.由割线长定理知BM•BA=BN•BC,即$\frac{BA}{BC}=\frac{BN}{BM}$,从而可得结论.

解答 解:因为CM是∠ACB的平分线,所以$\frac{AC}{BC}=\frac{AM}{BM}$,
又已知2AB=AC,所以$\frac{AB}{BC}=\frac{1}{2}•\frac{AM}{BM}$.
设△AMC的外接圆为圆D,则MA与NC是圆D过同一点B的两条弦,
所以,由割线长定理知BM•BA=BN•BC,即$\frac{BA}{BC}=\frac{BN}{BM}$,所以BN=$\frac{1}{2}$AM,
因为AM=$\sqrt{2}$,所以BN=$\frac{\sqrt{2}}{2}$.

点评 本题主要考查角平分线的性质,圆的切割线定理的应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.已知数列{an}满足an+1=$\frac{1+{a}_{n}}{1-{a}_{n}}$(n∈N+),若a1=$\frac{1}{2}$,则a2015=-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.公园中有一个月亮门,上边是半径为$\frac{\sqrt{17}}{2}$m的圆的劣弧,下边是长半轴等于2m,短半轴等于1m的半个椭圆,现要搬运一个横截面为矩形的货箱水平通过该月亮门.若矩形货箱的横截面的水平底边长为2m,则该货箱的高所允许的最大值为多少m.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.设m,n∈R,若直线l:mx+ny-1=0与轴x相交于点A,与y轴相交于点B,且l与圆x2+y2=4相交所得弦的长为2,O为坐标原点,则mn的最大值为$\frac{1}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设全集U={x∈R|x>0},函数f(x)=$\frac{1}{{\sqrt{1-lnx}}}$的定义域为A,则∁UA为(  )
A.[e,+∞)B.(e,+∞)C.(0,e)D.(0,e]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.证明:
(1)(x-$\frac{1}{x}$)2n的展开式中常数项是(-2)n$\frac{1×3×5×…×(2n-1)}{n!}$.
(2)(1+x)2n的展开式的中间一项是$\frac{1×3×5×…×(2n-1)}{n!}$(2x)n

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设函数f(x)=x3-$\frac{1}{2}$x2-2x+5,当x∈[0,2]时,f(x)-m<0恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知点A(0,1),曲线C:y=alnx恒过定点B,P为曲线C上的动点且$\overrightarrow{AP}$•$\overrightarrow{AB}$的最小值为2,则a=(  )
A.-2B.-1C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知集合A={x|2<x<4},B={x|(x-1)(x-3)<0},则A∩B=(  )
A.(1,3)B.(1,4)C.(2,3)D.(2,4)

查看答案和解析>>

同步练习册答案