精英家教网 > 高中数学 > 题目详情
9.设全集U={x∈R|x>0},函数f(x)=$\frac{1}{{\sqrt{1-lnx}}}$的定义域为A,则∁UA为(  )
A.[e,+∞)B.(e,+∞)C.(0,e)D.(0,e]

分析 求出f(x)的定义域确定出A,根据全集U求出A的补集即可.

解答 解:由f(x)=$\frac{1}{\sqrt{1-lnx}}$,得到1-lnx>0,
解得:0<x<e,即A=(0,e),
∵全集U=(0,+∞),
∴∁UA=[e,+∞).
故选:A.

点评 此题考查了补集及其运算,熟练掌握补集的定义是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.为选拔选手参加“中国汉字听写大会”,某中学举行了一次“汉字听写大赛”活动.为了了解本次竞赛学生的成绩情况,从中抽取了部分学生的分数(得分取正整数,满分为100分)作为样本(样本容量为n)进行统计.按照[50,60),[60,70),[70,80),[80,90),[90,100]的分组作出频率分布直方图,并作出样本分数的茎叶图(图中仅列出了得分在[50,60),[90,100]的数据).

(1)求样本容量n和频率分布直方图中的x、y的值;
(2)在选取的样本中,从竞赛成绩在80分以上(含80分)的学生中随机抽取4名学生参加“中国汉字听写大会”,设随机变量X表示所抽取的4名学生中得分在[80,90)内的学生人数,求随机变量X的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.数列{an}的前n项和为Sn,已知a1=1,an+1=$\frac{n+2}{n}$Sn,证明:
(1)数列{$\frac{{S}_{n}}{n}$}是等比数列;
(2)求Sn与an

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设全集U=R,已知A={x|$\frac{2x+3}{x-2}$>0},B={x||x-1|<2},则(∁UA)∩B=(  )
A.(-$\frac{3}{2}$,-1)B.(-1,-2]C.(2,3]D.[2,3)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若等差数列{an}前n项和Sn有最大值,且$\frac{{{a_{11}}}}{{{a_{12}}}}$<-1,则当Sn取最大值时,n的值为(  )
A.10B.11C.12D.13

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在△ABC中,已知CM是∠ACB的平分线,△AMC的外接圆交BC于点N.若2AB=AC,AM=$\sqrt{2}$,求BN的长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.函数y=sin2x-2sinxsin(x+$\frac{π}{3}$)+sin$\frac{3π}{2}$的图象的对称轴是$x=\frac{kπ}{2}\;+\frac{π}{4}(k∈{Z})$,对称中心是$(\frac{kπ}{2},-1)(k∈{Z})$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.我们把离心率相等的椭圆按称之为“同基椭圆”,已知椭圆C1:$\frac{{x}^{2}}{{m}_{1}^{2}}$+y2=1(m1>1)和椭圆C2:y2+$\frac{{x}^{2}}{{m}_{2}^{2}}$=1(0<m2<1)为“同基椭圆”,直线l:y=$\frac{\sqrt{3}}{2}$与曲线C1从左至右交于A、D两点,与曲线C2从左至右交于B、C两点,O为坐标原点,且|AC|=$\frac{5}{4}$,则椭圆C1、C2的交点个数为(  )
A.4B.2C.0D.无数个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.函数f(x)=$\frac{ax+b}{(x+c)^{2}}$的图象如图所示,则下列结论成立的是(  )
A.a>0,b>0,c<0B.a<0,b>0,c>0C.a<0,b>0,c<0D.a<0,b<0,c<0

查看答案和解析>>

同步练习册答案