·ÖÎö £¨1£©Ô²CµÄ²ÎÊý·½³ÌÏûÈ¥²ÎÊýÄÜÇó³öÔ²µÄ¼«×ø±ê·½³Ì£¬°Ñx=¦Ñcos¦È£¬y=¦Ñsin¦È´úÈ뻯¼òÄÜÇó³ö´ËÔ²µÄ¼«×ø±ê·½³Ì£®
£¨II£©Çó³öÖ±Ïßl£ºy+$\sqrt{3}$x=3$\sqrt{3}$£¬ÉäÏßOM£ºy=$\sqrt{3}$x£®ÁªÁ¢$\left\{\begin{array}{l}{y+\sqrt{3}x=3\sqrt{3}}\\{y=\sqrt{3}x}\end{array}\right.$£¬µÃQ£¨$\frac{3}{2}£¬\frac{3\sqrt{3}}{2}$£©£¬ÁªÁ¢$\left\{\begin{array}{l}{y=\sqrt{3}x}\\{£¨x-1£©^{2}+{y}^{2}=1}\end{array}\right.$£¬µÃP£¨$\frac{1}{2}$£¬$\frac{\sqrt{3}}{2}$£©£¬ÓÉ´ËÄÜÇó³öÏß¶ÎPQµÄ³¤£®
½â´ð ½â£º£¨1£©Ô²CµÄ²ÎÊý·½³ÌΪ$\left\{{\begin{array}{l}{x=1+cosϕ}\\{y=sinϕ}\end{array}}\right.$£¨¦ÕΪ²ÎÊý£©£®
ÏûÈ¥²ÎÊý¿ÉµÃ£º£¨x-1£©2+y2=1£®
°Ñx=¦Ñcos¦È£¬y=¦Ñsin¦È´úÈ뻯¼òµÃ´ËÔ²µÄ¼«×ø±ê·½³ÌΪ£º¦Ñ=2cos¦È£®
£¨II£©ÈçͼËùʾ£¬Ö±ÏßlµÄ¼«×ø·½³ÌÊÇ$2¦Ñsin£¨¦È+\frac{¦Ð}{3}£©=3\sqrt{3}$£¬
ÉäÏßOM£º¦È=$\frac{¦Ð}{3}$£®
¿ÉµÃÆÕͨ·½³Ì£ºÖ±Ïßl£ºy+$\sqrt{3}$x=3$\sqrt{3}$£¬ÉäÏßOM£ºy=$\sqrt{3}$x£®
ÁªÁ¢$\left\{\begin{array}{l}{y+\sqrt{3}x=3\sqrt{3}}\\{y=\sqrt{3}x}\end{array}\right.$£¬½âµÃx=$\frac{3}{2}$£¬y=$\frac{3\sqrt{3}}{2}$£¬¼´Q£¨$\frac{3}{2}£¬\frac{3\sqrt{3}}{2}$£©£®
ÁªÁ¢$\left\{\begin{array}{l}{y=\sqrt{3}x}\\{£¨x-1£©^{2}+{y}^{2}=1}\end{array}\right.$£¬½âµÃ$\left\{\begin{array}{l}{x=0}\\{y=0}\end{array}\right.$»ò$\left\{\begin{array}{l}{x=\frac{1}{2}}\\{y=\frac{\sqrt{3}}{2}}\end{array}\right.$£®
¡àP£¨$\frac{1}{2}$£¬$\frac{\sqrt{3}}{2}$£©£®
¡à|PQ|=$\sqrt{£¨\frac{3}{2}-\frac{1}{2}£©^{2}+£¨\frac{3\sqrt{3}}{2}-\frac{\sqrt{3}}{2}£©^{2}}$=2£®
¡àÏß¶ÎPQµÄ³¤Îª2£®
µãÆÀ ±¾Ì⿼²éÔ²µÄ¼«×ø±ê·½³ÌµÄÇ󷨣¬¿¼²éÏ߶㤵ÄÇ󷨣¬¿¼²é¼«×ø±ê·½³Ì¡¢²ÎÊý·½³Ì¡¢Ö±½Ç×ø±ê·½³ÌµÄ»¥»¯¡¢µãµ½Ö±ÏߵľàÀ빫ʽ¡¢Èý½Çº¯ÊýÐÔÖʵȻù´¡ÖªÊ¶£¬¿¼²éÍÆÀíÂÛÖ¤ÄÜÁ¦¡¢ÔËËãÇó½âÄÜÁ¦£¬¿¼²é»¯¹éÓëת»¯Ë¼Ïë¡¢º¯ÊýÓë·½³Ì˼Ï룬ÊÇÖеµÌ⣮
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | µÈÓÚ$-\frac{1}{2}$ | B£® | µÈÓÚ0 | C£® | µÈÓÚ$\frac{1}{2}$ | D£® | ²»´æÔÚ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | ¢Ù¢Ü | B£® | ¢Ú¢Û | C£® | ¢Ù¢Û | D£® | ¢Ú¢Ü |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | ÃüÌâ¡°Èôx¡Ù1£¬Ôòx2-3x+2¡Ù0¡±µÄÄæ·ñÃüÌâÊÇ¡°Èôx2-3x+2=0£¬Ôòx=1¡± | |
| B£® | ÈôÃüÌâp£º?x¡ÊR£¬x2+x+1¡Ù0£¬Ôò?p£º?x¡ÊR£¬x2+x+1=0 | |
| C£® | Èôp¡ÅqÎªÕæÃüÌ⣬Ôòp£¬q¾ùÎªÕæÃüÌâ | |
| D£® | ÈôÃüÌâq£º?x¡ÊR£¬x2+mx+1£¾0ÎªÕæÃüÌ⣬ÔòmµÄȡֵ·¶Î§Îª-2£¼m£¼2 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | £¨¡À3£¬0£© | B£® | £¨¡À1£¬0£© | C£® | £¨0£¬¡À1£© | D£® | £¨0£¬¡À$\sqrt{3}$£© |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | $\frac{c}{a}£¾\frac{d}{b}$ | B£® | $\frac{c}{a}£¼\frac{d}{b}$ | C£® | $\frac{c}{b}£¾\frac{d}{a}$ | D£® | $\frac{c}{b}£¼\frac{d}{a}$ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com