3£®ÔÚÖ±½Ç×ø±êϵxOy ÖУ¬ÒÑÖªÔ²CµÄ²ÎÊý·½³ÌΪ$\left\{{\begin{array}{l}{x=1+cosϕ}\\{y=sinϕ}\end{array}}\right.$£¨¦ÕΪ²ÎÊý£©£®ÒÔ×ø±êÔ­µãΪ¼«µã£¬xÖáÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£®
£¨1£©ÇóÔ²µÄ¼«×ø±ê·½³Ì£»
£¨2£©Ö±ÏßlµÄ¼«×ø·½³ÌÊÇ$2¦Ñsin£¨¦È+\frac{¦Ð}{3}£©=3\sqrt{3}$£¬ÉäÏßOM£º¦È=$\frac{¦Ð}{3}$ÓëÔ²µÄ½»µãΪO£¬P£¬ÓëÖ±ÏßlµÄ½»µãΪQ£¬ÇóÏß¶ÎPQµÄ³¤£®

·ÖÎö £¨1£©Ô²CµÄ²ÎÊý·½³ÌÏûÈ¥²ÎÊýÄÜÇó³öÔ²µÄ¼«×ø±ê·½³Ì£¬°Ñx=¦Ñcos¦È£¬y=¦Ñsin¦È´úÈ뻯¼òÄÜÇó³ö´ËÔ²µÄ¼«×ø±ê·½³Ì£®
£¨II£©Çó³öÖ±Ïßl£ºy+$\sqrt{3}$x=3$\sqrt{3}$£¬ÉäÏßOM£ºy=$\sqrt{3}$x£®ÁªÁ¢$\left\{\begin{array}{l}{y+\sqrt{3}x=3\sqrt{3}}\\{y=\sqrt{3}x}\end{array}\right.$£¬µÃQ£¨$\frac{3}{2}£¬\frac{3\sqrt{3}}{2}$£©£¬ÁªÁ¢$\left\{\begin{array}{l}{y=\sqrt{3}x}\\{£¨x-1£©^{2}+{y}^{2}=1}\end{array}\right.$£¬µÃP£¨$\frac{1}{2}$£¬$\frac{\sqrt{3}}{2}$£©£¬ÓÉ´ËÄÜÇó³öÏß¶ÎPQµÄ³¤£®

½â´ð ½â£º£¨1£©Ô²CµÄ²ÎÊý·½³ÌΪ$\left\{{\begin{array}{l}{x=1+cosϕ}\\{y=sinϕ}\end{array}}\right.$£¨¦ÕΪ²ÎÊý£©£®
ÏûÈ¥²ÎÊý¿ÉµÃ£º£¨x-1£©2+y2=1£®
°Ñx=¦Ñcos¦È£¬y=¦Ñsin¦È´úÈ뻯¼òµÃ´ËÔ²µÄ¼«×ø±ê·½³ÌΪ£º¦Ñ=2cos¦È£®
£¨II£©ÈçͼËùʾ£¬Ö±ÏßlµÄ¼«×ø·½³ÌÊÇ$2¦Ñsin£¨¦È+\frac{¦Ð}{3}£©=3\sqrt{3}$£¬
ÉäÏßOM£º¦È=$\frac{¦Ð}{3}$£®
¿ÉµÃÆÕͨ·½³Ì£ºÖ±Ïßl£ºy+$\sqrt{3}$x=3$\sqrt{3}$£¬ÉäÏßOM£ºy=$\sqrt{3}$x£®
ÁªÁ¢$\left\{\begin{array}{l}{y+\sqrt{3}x=3\sqrt{3}}\\{y=\sqrt{3}x}\end{array}\right.$£¬½âµÃx=$\frac{3}{2}$£¬y=$\frac{3\sqrt{3}}{2}$£¬¼´Q£¨$\frac{3}{2}£¬\frac{3\sqrt{3}}{2}$£©£®
ÁªÁ¢$\left\{\begin{array}{l}{y=\sqrt{3}x}\\{£¨x-1£©^{2}+{y}^{2}=1}\end{array}\right.$£¬½âµÃ$\left\{\begin{array}{l}{x=0}\\{y=0}\end{array}\right.$»ò$\left\{\begin{array}{l}{x=\frac{1}{2}}\\{y=\frac{\sqrt{3}}{2}}\end{array}\right.$£®
¡àP£¨$\frac{1}{2}$£¬$\frac{\sqrt{3}}{2}$£©£®
¡à|PQ|=$\sqrt{£¨\frac{3}{2}-\frac{1}{2}£©^{2}+£¨\frac{3\sqrt{3}}{2}-\frac{\sqrt{3}}{2}£©^{2}}$=2£®
¡àÏß¶ÎPQµÄ³¤Îª2£®

µãÆÀ ±¾Ì⿼²éÔ²µÄ¼«×ø±ê·½³ÌµÄÇ󷨣¬¿¼²éÏ߶㤵ÄÇ󷨣¬¿¼²é¼«×ø±ê·½³Ì¡¢²ÎÊý·½³Ì¡¢Ö±½Ç×ø±ê·½³ÌµÄ»¥»¯¡¢µãµ½Ö±ÏߵľàÀ빫ʽ¡¢Èý½Çº¯ÊýÐÔÖʵȻù´¡ÖªÊ¶£¬¿¼²éÍÆÀíÂÛÖ¤ÄÜÁ¦¡¢ÔËËãÇó½âÄÜÁ¦£¬¿¼²é»¯¹éÓëת»¯Ë¼Ïë¡¢º¯ÊýÓë·½³Ì˼Ï룬ÊÇÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®ÒÑÖªº¯Êýf£¨x£©=x2+2ax+c
£¨1£©Èôf£¨x£©=f£¨-2-x£©£¬f£¨0£©=-4£®Çóf£¨x£©ÔÚ[3£¬+¡Þ£©ÉϵÄ×îСֵ£º
£¨2£©Èô¶ÔÓÚÈÎÒâx¡Ê[1£¬1+a]£¬f£¨x£©£¾$\frac{9}{4}$x-a2+cºã³ÉÁ¢£®ÇóʵÊýaµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®ÔÚÊýÁÐ{an}ÖУ¬an=£¨-$\frac{1}{2}$£©n£¬n¡ÊN*£¬Ôò$\underset{lim}{n¡ú¡Þ}$an£¨¡¡¡¡£©
A£®µÈÓÚ$-\frac{1}{2}$B£®µÈÓÚ0C£®µÈÓÚ$\frac{1}{2}$D£®²»´æÔÚ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®¸ø³öÒÔÏÂËĸö˵·¨£º
¢Ù»æÖÆÆµÂÊ·Ö²¼Ö±·½Í¼Ê±£¬¸÷С³¤·½ÐεÄÃæ»ýµÈÓÚÏàÓ¦¸÷×éµÄ×é¾à£»
¢ÚÔÚ¿Ì»­»Ø¹éÄ£Ð͵ÄÄâºÏЧ¹ûʱ£¬Ïà¹ØÖ¸ÊýR2µÄÖµÔ½´ó£¬ËµÃ÷ÄâºÏµÄЧ¹ûÔ½ºÃ£»
¢ÛÉèËæ»ú±äÁ¿¦Î·þ´ÓÕý̬·Ö²¼N£¨4£¬22£©£¬Ôòp£¨¦Î£¾4£©=$\frac{1}{2}$
¢Ü¶Ô·ÖÀà±äÁ¿XÓëY£¬ÈôËüÃǵÄËæ»ú±äÁ¿K2µÄ¹Û²âÖµkԽС£¬ÔòÅжϡ°XÓëYÓйØÏµ¡±µÄ°ÑÎճ̶ÈÔ½´ó£®
ÆäÖÐÕýÈ·µÄ˵·¨ÊÇ£¨¡¡¡¡£©
A£®¢Ù¢ÜB£®¢Ú¢ÛC£®¢Ù¢ÛD£®¢Ú¢Ü

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

18£®ÏÂÁÐÑ¡ÏîÐðÊö´íÎóµÄÊÇ£¨¡¡¡¡£©
A£®ÃüÌâ¡°Èôx¡Ù1£¬Ôòx2-3x+2¡Ù0¡±µÄÄæ·ñÃüÌâÊÇ¡°Èôx2-3x+2=0£¬Ôòx=1¡±
B£®ÈôÃüÌâp£º?x¡ÊR£¬x2+x+1¡Ù0£¬Ôò?p£º?x¡ÊR£¬x2+x+1=0
C£®Èôp¡ÅqÎªÕæÃüÌ⣬Ôòp£¬q¾ùÎªÕæÃüÌâ
D£®ÈôÃüÌâq£º?x¡ÊR£¬x2+mx+1£¾0ÎªÕæÃüÌ⣬ÔòmµÄȡֵ·¶Î§Îª-2£¼m£¼2

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

8£®ÍÖÔ²x2+my2=1µÄ³¤Ö᳤Ϊ4£¬ÔòÆä½¹µã×ø±êΪ£¨¡¡¡¡£©
A£®£¨¡À3£¬0£©B£®£¨¡À1£¬0£©C£®£¨0£¬¡À1£©D£®£¨0£¬¡À$\sqrt{3}$£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®ÒÑÖªÊýÁÐ{an}µÄǰnÏîµÄºÍΪSn£¬ÇÒSn+$\frac{1}{2}$an=1£¨n¡ÊN*£©
£¨1£©Çó{an}µÄͨÏʽ£»
£¨2£©Éèbn=-log3£¨1-Sn£©£¬ÉèCn=$\frac{4{b}_{n+1}}{{{b}_{n}}^{2}•{{b}^{2}}_{n+2}}$£¬ÇóÊýÁÐ{Cn}µÄǰnÏîµÄºÍTn£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®Èç¹ûa£¼b£¼0£¬c£¾d£¾0£¬ÄÇôһ¶¨ÓУ¨¡¡¡¡£©
A£®$\frac{c}{a}£¾\frac{d}{b}$B£®$\frac{c}{a}£¼\frac{d}{b}$C£®$\frac{c}{b}£¾\frac{d}{a}$D£®$\frac{c}{b}£¼\frac{d}{a}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®ÒÑÖªÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©¹ýµã£¨0£¬$\sqrt{2}$£©£¬ÀëÐÄÂÊΪ$\frac{\sqrt{3}}{3}$£®
£¨1£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©¹ýµãP£¨1£¬1£©·Ö±ð×÷бÂÊΪk1¡¢k2µÄÍÖÔ²µÄ¶¯ÏÒAB¡¢CD£¬ÉèM¡¢N·Ö±ðΪÏß¶ÎAB¡¢CDµÄÖе㣬Èôk1+k2=1£¬ÊÇ·ñ´æÔÚÒ»¸ö¶¨µãQ£¬Ê¹µÃÆäÔÚÖ±ÏßMNÉÏ£¬Èô´æÔÚ£¬Çó³ö¸Ã¶¨µãµÄ×ø±ê£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸