精英家教网 > 高中数学 > 题目详情
设点A(-2,),椭圆+ =1的右焦点为F,点P在椭圆上移动,当|PA|+2|PF|取最小值时,P点的坐标是__________.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题


椭圆G的两个焦点M是椭圆上一点,且满足.                                    
(1)求离心率的取值范围;
(2)当离心率取得最小值时,点到椭圆上的点的最远距离为
①求此时椭圆G的方程;
②设斜率为)的直线与椭圆G相交于不同的两点ABQAB的中点,问:AB两点能否关于过点Q的直线对称?若能,求出的取值范围;若不能,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

 (本小题共12分) 双曲线与椭圆有共同的焦点,点
是双曲线的渐近线与椭圆的一个交点,求椭圆与双曲线的标准方程。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若椭圆的离心率为,则它的长半轴长为(   )
A.1B.2C.1或2D.与m有关

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆的离心率e是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(示范高中)如图,已知椭圆(a>b>0)的离心率,过点的直线与原点的距离为
(1)求椭圆的方程;
(2)已知定点,若直线与椭圆交于两点.问:是否存在的值,使以为直径的圆过点?请说明理由.
 

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知点P是椭圆上的动点,为椭圆的左、右焦点,O为坐标原点,若M是的角平分线上的一点,且F1M⊥MP,则|OM|的取值范围是(     )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分14分)已知直线与椭圆相交于两点,是线段上的一点,,且点M在直线
(1)求椭圆的离心率;
(2)若椭圆的焦点关于直线的对称点在单位圆上,求椭圆的方程。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设A、B分别为椭圆的左、右顶点,椭圆的长轴长为4,且点在该椭圆上。
(I)求椭圆的方程;
(II)设P为直线x=4上不同于点(4,0)的任意一点,若直线AP与椭圆相交于A的点
M,证明:为锐角三角形

查看答案和解析>>

同步练习册答案