精英家教网 > 高中数学 > 题目详情

椭圆G的两个焦点M是椭圆上一点,且满足.                                    
(1)求离心率的取值范围;
(2)当离心率取得最小值时,点到椭圆上的点的最远距离为
①求此时椭圆G的方程;
②设斜率为)的直线与椭圆G相交于不同的两点ABQAB的中点,问:AB两点能否关于过点Q的直线对称?若能,求出的取值范围;若不能,请说明理由.

(1)
(2)
解:(1)离心率的的取值范围是
(2)①当离心率的取最小值时,椭圆的方程可表示为
是椭圆上的一点,则其中
,则当时,有最大值所以解得(均舍去)。
,则当时,有最大值所以解得
∴所求椭圆方程为
②设,则由两式相减得……. ①
又直线⊥直线∴直线的方程为,将坐标代入得……. ②
由①②解得,而点Q必在椭圆得内部,∴,由此可得,又
故当时,A,B两点关于过点P,Q得直线对称.)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

已知椭圆的长轴长是短轴长的2倍,则椭圆的离心率等于(   )
A. B.C. D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆(a>b>0)的离心率,过点A(0,-b)和B(a,0)的直线与原点的距离为

(1)求椭圆的方程.
(2)已知定点E(-1,0),若直线y=kx+2(k≠0)与椭圆交于C、D两点.问:是否存在k的值,使以CD为直径的圆过E点?请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆+=1上一点P到左焦点的距离为,则P到右准线的距离为( )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

((本小题满分12分)
中心在原点,焦点在x轴上的椭圆,率心率,此椭圆与直线交于A、B两点,且OA⊥OB(其中O为坐标原点).
(1)求椭圆方程;
(2)若M是椭圆上任意一点,为椭圆的两个焦点,求的取值范围;

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

椭圆的方程为,斜率为1的直线与椭圆交于两点.
(Ⅰ)若椭圆的离心率,直线过点,且,求椭圆的方程;
(Ⅱ)直线过椭圆的右焦点F,设向量,若点在椭圆上,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

的焦点与椭圆的右焦点重合,则的值为(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

对任意的实数k,直线y=kx+1与椭圆恒有两个交点,则的取值范围____

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设点A(-2,),椭圆+ =1的右焦点为F,点P在椭圆上移动,当|PA|+2|PF|取最小值时,P点的坐标是__________.

查看答案和解析>>

同步练习册答案