精英家教网 > 高中数学 > 题目详情
6.设集合S含有n个元素,A1,A2,…,Ak是S的不同子集,它们两两的交集非空,而S的其他子集不能与A1,A2,…,Ak都相交,求证:k=2n-1

分析 把2n个子集按互补关系配成2n-1对.只需证明下两步.先证明每对不能同时取,再证明每对不能都不取.

解答 证明:把2n个子集按互补关系配成2n-1对.只需证明下两步.
先证明每对不能同时取(否则它们的交为空,矛盾).
再证明每对不能都不取,否则设A、B互补且都没取,那么A为什么不被取呢,因为已取的集合中有与A不交的C,C一定是B的子集;B为什么不被取呢,因为已取的集合中有与B不交的D,D一定是A的子集.但是C、D本身就是不交的,却都被取了,岂不矛盾.
综上所述,k=2n-1

点评 本题考查集合的关系,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.若a,b,p(a≠0,b≠0,p>0)分别表示同一直线的横截距、纵截距及原点到直线的距离,则下列关系式成立的是(  )
A.$\frac{1}{{a}^{2}}$+$\frac{1}{{b}^{2}}$=$\frac{1}{{p}^{2}}$B.$\frac{1}{{a}^{2}}$-$\frac{1}{{b}^{2}}$=$\frac{1}{{p}^{2}}$C.$\frac{1}{{a}^{2}}$+$\frac{1}{{p}^{2}}$=$\frac{1}{{b}^{2}}$D.$\frac{1}{{a}^{2}{p}^{2}}$=$\frac{1}{{b}^{2}}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知△ABC的面积S和三边a,b,c满足:S=a2-(b-c)2,b+c=6,则△ABC的面积S的最大值为$\frac{36}{17}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.定义在R上的函数f(x)满足f(x)=$\left\{\begin{array}{l}{lo{g}_{2}(4-x),x≤0}\\{f(x-1)-f(x-2),x>0}\end{array}\right.$,求f(3)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设集合M是实数集R的一个子集,如果点x0∈R满足:对任意?>0,都存在x∈M,使得0<|x-x0|<?,称x0为集合M的一个“聚点”.若由集合:
①有理数集;
②无理数集;
③{sin$\frac{π}{n+1}$|n∈N*};
④{$\frac{n}{n+1}$|n∈N*}
其中以0为“聚点”的集合是①②③.(写出所有符合题意的结论序号)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.函数f(x)=loga(6-ax)在(0,2)上为减函数,则a的取值范围是(1,3].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知直线bx+ay+2=0与曲线y=x3-1在点P(1,0)处的切线平行,则$\frac{a}{b}$=(  )
A.$\frac{1}{3}$B.$-\frac{1}{3}$C.$\frac{2}{3}$D.$-\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知向量$\overrightarrow{a}$=(1,0),$\overrightarrow{b}$=(2,1),且($\overrightarrow{b}$-λ$\overrightarrow{a}$)⊥$\overrightarrow{a}$,则实数λ的值为(  )
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设函数f(x)=|x+2|-|x-1|.
(1)求不等式f(x)>1解集;
(2)若关于x的不等式f(x)+4≥|1-2m|有解,求实数m的取值范围.

查看答案和解析>>

同步练习册答案