精英家教网 > 高中数学 > 题目详情
8.在△ABC中,角A,B,C的对边分别为a,b,c,且A,B,C成等差数列
(1)若b=2$\sqrt{3}$,c=2,求△ABC的面积;
(2)若a,b,c成等比数列,试判断△ABC的形状.

分析 (1)利用等差数列的性质与三角形内角和定理可得B,再利用余弦定理、三角形面积计算公式即可得出.
(2)利用等比数列的性质、余弦定理即可得出a=c,又B=$\frac{π}{3}$,即可得出.

解答 解:(1)由A,B,C成等差数列,∴2B=A+C,
∵A,B,C为△ABC的内角,∴A+B+C=π.
得B=$\frac{π}{3}$,
∵b2=a2+c2-2accosB,
∴${(2\sqrt{3})^2}={a^2}+4-4acos\frac{π}{3}$,解得a=4或a=-2(舍去)
∴${s_{△ABC}}=\frac{1}{2}acsinB=\frac{1}{2}×4×2sin\frac{π}{3}=2\sqrt{3}$.
(2)由a,b,c成等比数列,有b2=ac,
由余弦定理可得b2=a2+c2-2accosB=a2+c2-ac,
∴a2+c2-ac=ac,
即(a-c)2=0
因此a=c,又B=$\frac{π}{3}$
∴△ABC为等边三角形.

点评 本题考查了正弦定理余弦定理、等差数列与等比数列的性质、三角形内角和定理,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.在椭圆$\frac{{x}^{2}}{36}+\frac{{y}^{2}}{27}$=1上有两个动点M,N,K(3,0)为定点,$\overrightarrow{KM}$•$\overrightarrow{KN}$=0,则$\overrightarrow{KM}$•$\overrightarrow{NM}$最小值为9.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.设等差数列{an}的前n项和为Sn,若S9=54,则a2+a4+a9=18.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知角θ的终边经过点P(a,-2),且cosθ=-$\frac{4}{5}$.
(1)求sinθ,tanθ的值;
(2)求$\frac{{sin({π-θ})+2cos({\frac{π}{2}+θ})}}{{cos({π+θ})-sin({\frac{π}{2}+θ})}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=-x3+ax2+b(a,b∈R).
(Ⅰ)若0<a<3,当x∈[0,1]时,试确定当|f'(x)|≤1时a,b满足的条件;
(Ⅱ)若a=2时,函数f(x)的图象与直线y=1恰有三个不同的公共点,试确定b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.如表是某小卖部一周卖出热茶的杯数与当天气温的对比表:
气温/℃18131040
杯数2434395162
若热茶杯数y与气温x近似地满足线性关系,则其关系式最接近的是(  )
A.y=x+6B.y=-x+42C.y=-2x+60D.y=-3x+78

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.圆的半径是1,弧度数为3的圆心角所对扇形的面积等于$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.△ABC中,若BC=4,cosB=$\frac{1}{4}$,则sinB=$\frac{\sqrt{15}}{4}$,$\overrightarrow{AB}$•$\overrightarrow{AC}$的最小值为:-$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.函数f(x)、g(x)满足如表格:
2x+13579
f(2x+1)1234
x1234
g(x)3579
若g[f(2x+1)]=3,则x=1.

查看答案和解析>>

同步练习册答案