精英家教网 > 高中数学 > 题目详情
16.已知角θ的终边经过点P(a,-2),且cosθ=-$\frac{4}{5}$.
(1)求sinθ,tanθ的值;
(2)求$\frac{{sin({π-θ})+2cos({\frac{π}{2}+θ})}}{{cos({π+θ})-sin({\frac{π}{2}+θ})}}$的值.

分析 (1)利用同角三角函数基本关系式以及三角函数定义求解即可.
(2)利用诱导公式化简求解即可.

解答 解:(1)∵$cosθ=-\frac{4}{5}$,且过P(a,-2),
∴θ为第三象限的角…(2分)
∴$sinθ=-\sqrt{1-{{cos}^2}θ}=-\frac{3}{5}$…(4分)  
  $tanθ=\frac{sinθ}{cosθ}=\frac{3}{4}$…(6分)
(2)$\frac{{sin({π-θ})+2cos({\frac{π}{2}+θ})}}{{cos({π+θ})-sin({\frac{π}{2}+θ})}}=\frac{sinθ-2sinθ}{-cosθ-cosθ}=\frac{sinθ}{2cosθ}=\frac{3}{8}$…(10分)

点评 本题考查三角函数化简求值,三角函数定义,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=x3+ax2+bx在x=-2与x=$\frac{1}{2}$处都取得极值.
(1)求函数f(x)的解析式及单调区间;
(2)求函数f(x)在区间[-3,2]的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.余弦函数y=cos(x+$\frac{π}{4}$)在下列(  )区间为减函数.
A.[-$\frac{3}{4}$π,$\frac{π}{4}$]B.[-π,0]C.[-$\frac{π}{4}$,$\frac{3}{4}$π]D.[-$\frac{π}{2}$,$\frac{π}{2}$]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在(1+x+$\frac{1}{{x}^{2015}}$)10的展开式中,含x2项的系数为(  )
A.10B.30C.45D.120

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设二次函数f(x)=ax2+bx.
(1)若1≤f(-1)≤2,2≤f(1)≤4,求f(-2)的取值范围;
(2)当b=1时,若对任意x∈[0,1],-1≤f(x)≤1恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.规定运算$|\begin{array}{l}{a}&{b}\\{c}&{d}\end{array}|$=ad-bc,若$|\begin{array}{l}{sin\frac{θ}{2}}&{cos\frac{θ}{2}}\\{cos\frac{3θ}{2}}&{sin\frac{3θ}{2}}\end{array}|$=$\frac{1}{2}$,则sinθ=$±\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在△ABC中,角A,B,C的对边分别为a,b,c,且A,B,C成等差数列
(1)若b=2$\sqrt{3}$,c=2,求△ABC的面积;
(2)若a,b,c成等比数列,试判断△ABC的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.(1)求证:$\sqrt{5}$+$\sqrt{7}$>1+$\sqrt{13}$;
(2)已知x,y∈R+,且x+y>1,求证:$\frac{1+x}{y}$与$\frac{1+y}{x}$中至少有一个小于3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知x>0,y>0且2x+y=2,则$\frac{1}{x}+\frac{4}{{{y^{\;}}}}$的最小值为3+2$\sqrt{2}$.

查看答案和解析>>

同步练习册答案