精英家教网 > 高中数学 > 题目详情
15.已知(3x+$\frac{1}{\sqrt{x}}$)n的展开式中各二项式系数之和为16.
(1)求正整数n的值;
(2)求展开式中x项的系数.

分析 (1)由题意可得展开式中各二项式系数之和2n=16,从而求得n的值.
(2)在(3x+$\frac{1}{\sqrt{x}}$)n的展开式的通项公式中,令x的幂指数等于1,求得 r的值,可得展开式中x项的系数.

解答 解:(1)由题意可得展开式中各二项式系数之和2n=16,∴n=4.
(2)(3x+$\frac{1}{\sqrt{x}}$)n的展开式的通项公式为 Tr+1=${C}_{4}^{r}$•34-r•${x}^{4-\frac{3r}{2}}$,令4-$\frac{3r}{2}$=1,求得 r=2,
∴展开式中x项的系数为${C}_{4}^{2}$×32=54.

点评 本题主要考查二项式定理的应用,二项式展开式的通项公式,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知θ∈(π,$\frac{3}{2}$π),且sin$\frac{θ}{2}$=$\frac{4}{5}$,求$\frac{sinθ}{1+cosθ}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在平面直角坐标系xOy中,椭圆C方程为$\left\{\begin{array}{l}x=5cosφ\\ y=3sinφ\end{array}\right.(φ$为参数),求过椭圆的右焦点,且与直线$\left\{\begin{array}{l}x=4-2t\\ y=3-t\end{array}\right.(t$为参数)平行的直线l的普通方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.关于函数f(x)=4sin(2x+$\frac{π}{3}$)(x∈R)有如下说法:
①由f(x1)=f(x2)=0可得,x1-x2是π的整数倍;
②表达式可改写为f(x)=4cos(2x-$\frac{π}{6}$);
③函数的图象关于点(-$\frac{π}{6}$,0)对称;
④函数的图象关于直线x=-$\frac{π}{6}$对称;
⑤函数在区间[-$\frac{5π}{12}$,$\frac{π}{12}$]上是减函数;
⑥函数为奇函数.其中你认为所有正确的说法的序号是②③.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.有一个圆锥,其母线长为18cm,要使其体积最大,则该圆锥的高为(  )
A.8cmB.6$\sqrt{3}$cmC.8$\sqrt{3}$cmD.12cm

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.数列{an}中,a1=1,an+1=$\frac{1}{{a}_{n}}+1$,则a4等于(  )
A.$\frac{5}{3}$B.$\frac{4}{3}$C.1D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.现采用随机模拟的方法估计某运动员射击4次,至少击中3次的概率:先由计算器给出0到9之间取整数值的随机数,指定0、1表示没有击中目标,2、3、4、5、6、7、8、9表示击中目标,以4个随机数为一组,代表射击4次的结果,经随机模拟产生了20组随机数:
7527 0293 7140 9857 0347 4373 8636 6947 1417 4698
0371 6233 2616 8045 6011 3661 9597 7424 7610 4281
根据以上数据估计该射击运动员射击4次至少击中3次的概率为(  )
A.0.852B.0.8192C.0.75D.0.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.半径为1的球的表面积为(  )
A.1B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设l,m,n表示三条不同的直线,α,β,γ表示三个不同的平面,给出下列四个命题:
①若l⊥α,m⊥l,m⊥β,则α⊥β;
②若m?β,n是l在m⊥l内的射影,m⊥l,则m⊥l;
③若m是平面α的一条斜线,A∉α,l为过A的一条动直线,则可能有l⊥m且l⊥α;
④若α⊥β,α⊥γ,则γ∥β
其中真命题的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案