精英家教网 > 高中数学 > 题目详情

【题目】如图,已知焦点在x轴上的椭圆有一个内含圆x2y2=,该圆的垂直于x轴的切线交椭圆于点MN,且 (O为原点).

1)求b的值;

2)设内含圆的任意切线l交椭圆于点AB.求证:,并求|AB|的取值范围.

【答案】12;(2)证明见解析,.

【解析】

1)设的坐标,利用,求得,得到点代入椭圆的方程,即可求解;

2)分类讨论,当轴时,由(1)知;当不与轴垂直时,设的方程为,代入椭圆的方程,利用韦达定理证得,再利用弦长公式,结合换元法和二次函数的性质,即可求解.

1)由圆的垂直于x轴的切线交椭圆于点MN,,

可得直线的方程为

,即,解得

可得点在椭圆上,代入椭圆方程

可得.

2)当轴时,由(1)知

不与轴垂直时,设的方程为,即

则原点到直线的距离,可得,整理得

把直线代入椭圆的方程

整理得

,则

所以,即

即椭圆内含圆的任意切线交椭圆时,总有

轴时,可得

不与轴垂直时,可得

,则

所以当,即时,的取最大值

,即时,的取最小值

综上可得,的取值范围是.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为响应德智体美劳的教育方针,唐徕回中高一年级举行了由全体学生参加的一分钟跳绳比赛,计分规则如下:

每分钟跳绳个数

185以上

得分

16

17

18

19

20

年级组为了了解学生的体质,随机抽取了100名学生,统计了他的跳绳个数,并绘制了如下样本频率直方图:

1)现从这100名学生中,任意抽取2人,求两人得分之和小于35分的概率(结果用最简分数表示);

2)若该校高二年级2000名学生,所有学生的一分钟跳绳个数近似服从正态分布,其中为样本平均数的估计值(同一组中数据以这组数据所在区间的中点值为代表).利用所得到的正态分布模型解决以下问题:

①估计每分钟跳绳164个以上的人数(四舍五入到整数)

②若在全年级所有学生中随机抽取3人,记每分钟跳绳在179个以上的人数为,求的分布列和数学期望与方差.

(若随机变量服从正态分布

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某媒体为调查喜爱娱乐节目A是否与观众性别有关,随机抽取了30名男性和30名女性观众,抽查结果用等高条形图表示如图:

根据该等高条形图,完成下列2×2列联表,并用独立性检验的方法分析,能否在犯错误的概率不超过0.05的前提下认为喜欢娱乐节目A与观众性别有关?

喜欢节目A

不喜欢节目A

总计

男性观众

女性观众

总计

60

附:

0.100

0.050

0.010

0.001

2.706

3.841

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是某地区2000年至2016年环境基础设施投资额(单位:亿元)的折线图.则下列结论中表述不正确的是( )

A. 从2000年至2016年,该地区环境基础设施投资额逐年增加;

B. 2011年该地区环境基础设施的投资额比2000年至2004年的投资总额还多;

C. 2012年该地区基础设施的投资额比2004年的投资额翻了两番 ;

D. 为了预测该地区2019年的环境基础设施投资额,根据2010年至2016年的数据(时间变量t的值依次为)建立了投资额y与时间变量t的线性回归模型,根据该模型预测该地区2019的环境基础设施投资额为256.5亿元.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆的右顶点为A,下顶点为B,过AOBO为坐标原点)三点的圆的圆心坐标为

(1)求椭圆的方程;

(2)已知点Mx轴正半轴上,过点BBM的垂线与椭圆交于另一点N,若∠BMN=60°,求点M的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面为菱形,平面分别是的中点.

(1)求证:

(2)为线段上的动点,若线段长的最小值为,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)当时,求函数在区间上的最值;

2)讨论的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数).

1)讨论函数在定义域内的极值点的个数;

2)若函数处取得极值,0),恒成立,求实数的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,直四棱柱的底面是菱形,分别是的中点.

1)证明:平面

2)求二面角的正弦值.

查看答案和解析>>

同步练习册答案